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ABOUT THE BOOK

More than 160 years have elapsed since Oersted discovered

electromagnetism. The dominant theory of the first eighty years was

the electrodynamics developed by Ampere, Neumann, and Weber. It

presided over the invention of generators, motors, transformers, trans-

mission lines, and electromagnets. Flourishing mainly in the schools

of France and Germany, the key memoirs were not translated into

English. Contemporary scientists and engineers are largely ignorant of

the old electrodynamics and frequently confuse it with later ideas.

This knowledge gap, it is hoped, will be filled by the first chapter of

this book. It is essentially an abbreviated text of 19th century electro-

magnetism.

The second chapter contains the body of experimental evidence

for longitudinal forces in metallic conductors. These forces comply
with Ampere's force law and exist in addition to the transverse forces

predicted by both Ampere's and Lorentz's force laws. Recent discover-

ies of electromagnetic jet propulsion, wire fragmentation by current

pulses, and the correct recoil action in railguns are fully discussed. An
ingeneous electrodynamic impulse pendulum, invented at the Uni-

versity of Athens, is described. It proves that electric current in a

metallic conductor is not associated with '^equivalent electromagnetic

mass in the field" which could be invoked for momentum conservation

and the seat of reaction forces.

Every opportunity has been taken to stress that the Ampere-
Neumann electrodynamics is an empirical theory devised for metallic

conductors. It certainly does not apply to convecting charges in

vacuum or dielectric fluids which are the arena of experimental particle



physics. It t's only in metals, presumably through the presence of lattice

ions, that Ampere forces and the Neumann induction phenomena make

themselves felt.

There is mention in the second chapter of the range of techno-

logical applications of these unfamiliar Ampere forces. The practical

applications comprise exploding wires, multi-arc generators for current

limiting fuses and switching operations, liquid metal jets and pumps,

the railgun dynamics, forces in electromagnets, and explosions in liquid

plasma conductors.

The theoretical evolution of the Newtonian electrodynamics for

metals, subsequent to Ampere, Neumann, and Weber, is covered in the

third chapter. It will come as a surprise just how great a contribution

Maxwell made to this topic. Perhaps the most important aspect of this

chapter is the outline of computer-aided macroscopic current element

analysis for force and inductance calculations. In the past calculations

of this nature have been bedevilled by integration singularities which

are easily removed by the use of finite—size current elements and fila-

ments.

A major new addition to the Ampere—Neumann electrodynamics

is the proposed pivoted atomic current element discussed in the last

chapter of the book. It arose from consideration of the magnetic

energy stored between pairs of metallic current elements and the

angle-dependence of this energy. The virtual work concept then re-

quires that the elements should not only be subject to mutual forces,

but also to mutual torques. Two different kinds of torque have been

revealed. One of them should be able to turn the pivoted element

about the lattice site and thereby furnish a microscopic mechanism of

generating e.m.f.'s. Quite unexpectedly, the same mechanism also of-

fered a new explanation of diamagnetism in metals. Near the end of

the last chapter, an experiment is proposed which should t)e capable

of testing the validity of the pivoted current element model.
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PREFACE

It is widely thought that science always progresses in a forward

direction and we never have to retrace our steps to see if somewhere

we took a wrong turn. The experiments described in this book tell a

different story. They suggest we should go back nearly one hundred

years and examine again Lorentz's hypothesis of the metallic current

element being nothing more than an electron in motion. This hypo-

thesis has worked well for electrons travel ing in vacuum and also ex-

plained many—but not all—observations with currents in metallic

conductors. It will be uncomfortable for teachers and textbook writers

to have to think in terms of two electromagnetic theories resting, as

they do, on totally different philosophical bases. Yet experiment is

unforgiving, and new advances in our understanding of nature demand

robust honesty. In this respect, the nicely rounded and pedagogrcally

unified treatment of a subject often signals stagnation.

Modern physics appears to be dominated by belief for which

there exists no experimental proof nor disproof. Instances are the

flight of free energy, commonly called radiation, the probabilistic in-

terpretation of quantum mechanics, and the universal validity of cer-
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tain space-time geometries. Strict adherence to belief has concen-

trated research in narrow areas and there produced remarkable re-

sults. However, reckoned on the time scale of centuries, it was the

breaking of physics dogma which produced the greatest advances. No
more dramatic example of this will be found in the history of science

than the surplanting of cartesian aether whirlpools by Newton's forces

of gravitational attraction.

The Ampere-Neumann electrodynamics belongs to the family

of newtonian theories which have distinguished themselves by their

ready application to practice. Tiie old electrodynamics returns in a new

guise at a time when ever larger current pulses are being forced through

metallic conductors for a variety of purposes, from the containment of

plasma fusion to hurling objects into space with electromagnetic ac-

celerators. It is hoped this book will be of help in the emerging field of

pulse power technology.

In this research I have been ably assisted by my son Neal who, at

the age of fourteen, gently led me to computers. He had a major hand

in developing the macroscopic current element analysis. During the last

six years, he was involved with the building and running of all crucial

experiments. Now that he is about to venture forth on his own, I wish

him that measure of luck without which no research can succeed.

I am indebted to Linda—Jo Ruscak for letting her computer run

weeks on end to hammer out the convergence figures on page 198.

Peter Graneau
Concord, Massachusetts

September, 1985



PREFACE TO SECOND EDITION

The continued demand for this book is gratifying. It does

not imply that the majority of physicists are abandoning
relativistic field theories, but rather that the Ampere-Neumann
electrodynamics is slowly and securely gaining ground. Its

principal support comes from experimentalists and engineers.

Textbooks on electromagnetism will not be revised in the present

century and it may take most of the twenty-first century to

implement their inevitable adjustment to experimental facts. In

his bk>graphy, Planck wrote:

'New scientific truth does not triumph by convincing

its opponents and making them see the light but rather because

its opponents eventually die, and a new generation grows up that

is familiar with it.'

Some high school students and undergraduates have

already repeated simple Ampere force experiments with little

more than car batteries and pocket money.

Since the publication of the first edition, much of the

debate has revolved around the far-action versus field-contact-

actbn controversy. It became clear that electrk: motors are not

driven by energy impact and recoil forces, as required by the

Poynting energy-momentum vector. The forces in common motors

must therefore arise from simultaneous far-actions. Virtual

photons of the quantum electrodynamics are also helpless in

overcoming the field energy discrepancy first revealed by the

impulse pendulum experiment. These Issues are more fully

discussed in a new book co-authored with my son Neal of Oxford

University 'Newton versus Einstein: How Matter Interacts with

Matter' (Carlton Press. New York. 1993).
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Apart from making typographical corrections, two

errors have been eliminated in this new edition. I am indebted to

Andre K. T. Assis for explaining to me very clearly that Ampere

forces can be integrated without singularities. While drafting this

book I was misled by the fact that specific Ampere forces (AF/i^)

will diverge as the current element becomes infinitely small. But

infinitely small current elements are not allowed by the atomicity

of matter.

The second error concerns the sign of the mutual alpha

and epsilon torques between a pair of current elements. These

torques represent a major extension of the Ampere-Neumann
electrodynamics. Without them energy conservation would be

jeopardized. Much remains to be discovered In this Intriguing new
area. There exist Indications that the two torques may interact

with each other and cancel certain alpha-torque effects. Figure 88

is new because of the sign correctk>n. A more comprehensive

treatment of the torque analysis awaits further developments.

Only in the last year has it become obvious that Newton's

third law enforces a sharp distinction between the usual

Newtonian mechanics and relativistic mechanics (statics).

Publk)atk>ns now In the press deal with this conflict. The reader is

wamed that the doubling of hoop tension, discussed on pages 160-

164, may not be true because it arose from a confused analysis in

which no line was drawn between the two mechanics.

Scientifically and technologically, most important

discoveries have been made, or come to light, in the past eight

years with regard to electric arc explosions, the cause of thunder

and capillary (non-thermonuclear) fusion. Only the Ampere-
Neumann electrodynamics has been able to explain these

phenomena. There is little doubt left that Ampere's force law also

applies to dense arc plasma. A further book is in the course of

preparation to deal with this subject.

Peter Graneau
Concord, Massachusetts

July. 1993



CHAPTER 1

EVOLUTION OK ELECTRODYNAMICS

BEGINNINGS OF ELECTROMAGNET I SM

Electricity and magnetism are words of Greek origin.

For two thousand years it was believed that the attraction

of iron by the lodestone and the attraction of many kinds

of matter by electrified amber had something in common.

At least since the Middle Ages man had known that lightning

striking iron could imbue this metal with magnetism. By

the same token, the fire from heaven was capable of changing

the polarity of a compass needle. Dibner [1] reports that

in 1802 Romagnosi, a lawyer and physicist at the University

of Parma, Italy, reversed the polarity of a compass by pass-

ing a galvanic current through it. This experiment came

close to the discovery of electromagnetism, universally

attributed to the Danish scientist Hans Christian Oersted,

eighteen years later.

The professor of natural philosophy in Copenhagen deter-

mined the direction in which a compass needle would turn

when a straight wire carrying an electric current was brought

near to the compass without touching it. One might ask

why this particular experiment was singled out as the beginn-

ing of electromagnetism?

Oersted felt so certain of the enthusiastic reception

of his discovery that he had a paper printed for the occasion

and sent to all scientists and journals of note at his time.

The paper was dated July 21, 1820. It explained how magnetic

flux encircled the current, but Oersted called flux 'electric

conflict'. Here finally was the missing link between elec-
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tricity and magnetism.

It has to be remembered Oersted's explanation of the

magnetic influence came at a time when effluvia, the aether,

and cartesian vortices were on the wane because of the succes

of Newton's and Coulomb's action-at-a-distance laws which

avoided any reference to what was happening in the space

between the interacting bodies. Newton's ovm words serve

best to describe the then prevailing philosophy of mathemati-

cal thinkers. In the preface to the first edition of the

'Principia' he said:

"Then from these forces, by other propositions which

are also nathematical, I deduce the motions of the

planets, the comets, the moon, and the sea. I wish

we could derive the rest of the phenomena of Nature

by the same kind of reasoning from mechanical prin-

ciples, for I am induced by many reasons to suspect

that they may all depend upon certain forces by which

the particles of bodies, by some causes hitherto

unknown, are either mutually impelled towards one

another, and cohere in regular figures, or are re-

pelled and recede from one another. These forces

being unknown, philosophers have hitherto attempted

the search of Nature in vain; but I hope the princip-

les here laid down will afford some light either

to this or some truer method of philosophy."

These words apply equally to the Ampere-Neumann electro-

dynamics which followed on the heels of Oersted's experiment.

Neither Ampere nor P.E. Neumann took heed of the magnetic

circles around electric currents. They wrote down the laws

of force and potential in accordance with the action-at-

a-distance model of newtonian gravitation. Newton was more

precise and spoke of mutual (simultaneous) Interaction so

as not to create the impression of something travelling

at finite or infinite speed between the interacting partic-
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les. In 1820, as today, there lived many scientists who dis-

liked action-at-a-distance and in their hearts had adhered

to the aristotelian principle of contact-action. Oersted

must have known they were in the majority and would welcome

an electromagnetic theory in terms of an active field. Forty

years later Maxwell placed the electromagnetic field on mathe-

matical foundations. Within a few decades of this last event

the world of physics had shed all remote action concepts.

Oersted's announcement [2] triggered a frenzy of activity

in Paris which at the time was the science capital of the

world. It caused the French Academy to stage a demonstration

of the Copenhagen experiment in front of its members. As

Hammond [3] recounts the occasion. Ampere went straight home

after the lecture to begin working on his electrodynamics,

missing the discussion at the Academy which he would normally

have enjoyed. This was September II, 1820. Precisely one

week later Ampere read a paper before the Academy and reported

that parallel wires carrying electric currents attract or

repel each other, depending on whether the two currents flow

in the same or opposite directions. This was as great a step

forward in electromagnetism as Oersted had taken. Ampere

followed up with weekly presentations to the members of the

Academy of the progress he was making in his experimental

investigation of the interaction of electric currents. Within

a few months he had laid the foundations of a new science

which he himself called electrodynamics.

Like Ampere, Jean-Baptiste Biot was also a professor

in Paris. He was an expert in the measurement of the strength

of the earth's magnetic field. The frequency of oscillation

of a compass needle had been found to be a measure of the

field strength. Biot had accompanied Gay-Lussac in the first

balloon flight in order to determine if the earth's magnetic

field varied with height above ground level. Biot was another

French scientist who was present at the Academy meeting of

September 11 and, like Ampere, he too rushed back to his
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laboratory. With his assistant Felix Savart he set up a 9alva-

nic current in a long vertical wire and, with due compensation

for the terrestial field, the two proceeded to survey the

magnetic field strength around the wire with their well estab-

lished method of the oscillating compass needle. Figure 1(a)

illustrates the nature of the Blot-Savart result. The force

H which would be exerted on unit magnetic pole was found

(b)

«- ki/r

(a) Result of measurements

(b) Analyzed by LaPlace

Fig.l Blot-Savart law

to be inversely proportional to the shortest distance r to

the wire. These Investigators had no means of measuring the

strength of the current 1, as the galvanometer was still

to be invented by Ampere. It Is not clear, therefore. If

the proportionality of H to 1 was taXen for granted or estab-

lished by a later series of measurements. At any rate, the

Blot-Savart experiments led to the following wellknown formula

for straight conductors

H - k 1/r (1.1)
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where k is a dimensional constant.

Blot and Savart spoke of their findings to the French

Academy on October 30, 1820. They were obviously competing

with Ampere in the unravelling of further electromagnetic

mysteries. What today is understood to be the Biot-Savart

law is not equation (1.1), but the differential of it with

respect to the current element i.ds, as shown in fig. 1(b).

The law may be written

dH - (k/RMi.ds sin.e (1.2)

where k is again a dimensional constant. According to Blot

and Ampere, (1.2) was derived from (1.1) by La Place, who

never claimed credit for it. An excellent account of these

happenings has been in-itten by Tricker [4, 5].

The Biot-Savart law introduces the concept of the 'cur-

rent-element' which has become the 'particle' of the Ampere-

Neumann electrodynamics. Without subdividing the wire into

short length-elements it would have been Impossible to com-

pute the magnetic field strength at a point due to a closed

circuit. Ampere employed the same current element in a

different way. Before going on to Ampere's work, a little

has to be said about the status of electrostatics at the

beginning of the nineteenth century.

Uhittaker in his famous "History of the theories of

aether and electricity" [6] maintains:

"By Franklin's law of the conservation of electric

charge, and Priestley's law of attraction between

charged bodies, electricity was raised to the position

of an exact science.

"

Benjamin Franklin working in isolation in America pro-

pounded the one-fluid theory of electricity which may be
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taken as the natural precursor of our present electronic

theory of solids. He also came to the conclusion that cer-

tain substances, which we now describe as dielectrics, are

inpenetrable to electric effluvia. Therefore the two elec-

trodes of a Leyden jar had to communicate by action-at-

a-distance. Through his friend Priestley in England, Frank-

lin's work was published in Europe. Particularly his experi-

ments of drawing lightning out of thunderclouds received

much attention. During the 1750's the German physicist

Aepinus took up Franklin's ideas and with them lllucidated

the phenomenon of electrostatic induction.

In 1766 Franklin wrote to Priestley asking him to repeat

an experiment with cork balls in an electrically charged

etal container. Franklin had found to his surprise that

the cork balls did not respond to the charge. Subsequently

Priestley established that the electric field strength,

as it would be called today, is zero inside an electrically

charged and closed metallic vessel. He clearly recognized

the analogy to gravitation and concluded [6]:

"Nay we not infer from this experiment that the at-

traction of electricity is subject to the same laws

with that of gravitation, and is therefore according

to the square of the distances; since it is easily

demonstrated that were the earth in the form of a

shell, a body in the inside of it would not be attrac-

ted to one side more than another?"

However the inverse-square- law of the interaction of

electric charges did not become comaon property of the scien-

tific community of the eighteenth century until Coulomb

proved it directly in 1785 by measurements with a torsion

balance. Coulomb's law may be written

F - k q^qj/H (1.3)
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The charges and are separated by the distance r between

their centers and k is a dimensional constant. If the char-

ges are both positive or both negative, the force F is posi-

tive and this represents repulsion. For charges of unlike

sign the force is negative which stands for attraction.

AMPERE'S FORCE LAW

In the tradition of the great French mathematicians

who developed the science of mechanics from Newton's laws.

Ampere set out to cast electromagnetism in a newtonian frame.

For this he required an appropriate fundamental law of

'particle' interaction. He suspected this would turn out

to be an inverse-square- law akin to those of Newton and

Coulomb which, to use his own words in English translation

[4], opened a new highway into the sciences which

have natural phenomena as their object of study".

However difficult it may appear today, the question

of what constitutes the elementary particle of electrodyna-

mics apparently posed no problem to Ampere, Blot and Savart.

They concurrently plunged for the 'current-element'. It

is not certain who may have thought of the concept first.

Ampere clearly recognized that, unlike the elementary par-

ticles of gravitation and electrostatics which were characte-

rized by a simple scalar magnitude (of mass or charge),

the current element would in addition to the magnitude of

current strength have to possess length and direction.

On the basis of his first electrodynamic experiments,

showing the attraction and repulsion of straight and parallel

current carrying wires. Ampere expected the law of mechanical

force between two current elements to be of the general

form
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^Vn - - ^min(d'« dn/H^^) f (a, e) (1.4)

The delta is meant to indicate that we are dealing with

an elemental force which cannot be measured because current

elements of wire circuits are not available in isolation.

The forces which we do measure in the laboratory are sums

of many elemental forces. In (1.4) the elements carry cur-

rents of strength 1 and 1 , and their lengths are dm and
m n

dn. The distance between the center points of the elements

is r and the angles of the function f are shovm in fig. 3.
m, n

If the angle function f(a.B'e) is positive, is
m, n

negative and this sign stands for attraction between the

elements. Ampere actually proposed the opposite sign conven-

tion, but his was subsequently dropped In order to coordinate

(1.4) with Coulomb's law (1.3). Both the current strengths

and element lengths were taken to be positive scalar quanti-

ties while the directional properties of the elements wfere

incorporated in the angle function f.

With respect to the proportionality of the elemental

force to the lengths and currents of the two elements Ampere

said [4]:

"First of all, it is evident that the mutual action

of two elements of electric current is proportional

to their lengths; for assuming them to be divided

into infinitesimal equal parts along their length,

all attractions and repulsions of these parts can

be regarded as directed along one and the same

straight line, so that they necessarily add up.

This action must also be proportional to the intensi-

ties of the two currents."

In his early papers on electrodynamics Ampere also as-

sumed the proportionality of the elemental force to the

inverse square of the distance of separation, because he
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believed all fundamental forces of nature obeyed this law.

Later he proved the validity of this early assumption with

the three-circle experiment of fig. 2. For the sake of clarity

the figure does not show the current leads to the three

parallel and coaxial current circles arranged in vertical

planes. All three circles were connected in series to ensure

equal current intensities in all of them. Ampere's method

of compensating for the effect of the earth's magnetic field

has also been omitted in fig. 2. The radii and distances

Fig. 2 Ampere's three-circle experiment

between the three current circles were chosen such that

the geometrical relationship of circle 1 to circle 2 was

similar to the relationship of circle 2 to circle 3. In

other words, the only difference between the 1-2 and 2-

3 combinations was a linear scale factor. Circles 1 and

3 were fixed to the laboratory frame, while circle 2 was

held coaxial with the other tvo but with its insulator am
free to rotate about the vertical line YY. The purpose

of this experiment was to show that, if the currents in

1 and 3 encircle the common axis XX in the same direction,

circle 2 will remain stationary, it being either attracted
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or repelled equally strongly by the two adjacent circles.

When the current in circle 2 flows in the direction shown

in fig. 2. the forces would be attractive.

This experiment proves that the reciprocal electrodynamic

forces between two current loops are independent of the

linear scale factor and therefore independent of the size

of the electrodynamic system of conductors. The same must

be true for all elemental forces into which the total force

may be divided. Hence the geometrical factor dm.dn/r* of
n, n

equation (1.4) must be a dimensionless number, a condition

%*hich can only be fulfilled by the inverse square law.

In addition to the proof provided by the three-circle experi-

ment, the knowledge that geometrically similar small and

large conductor arrangements are subject to the same mechani-

cal forces, for the sane currents, is a valuable result

in its own right.

Not surprisingly. Ampere's most challenging task proved

to be the determination of the angle function f(a, B,e).

A recurrent difficulty for those who have tried to understand

Ampere's force law, and others who have used it for engineer-

ing calculations, has been the visualization of the three

angles, particularly when the two elements do not lie in

tiie same plane. Figure 3 attempts to make this visualization

as easy as is possible. N and N are the center points of

two unequal current elements. The distance between N and

N, that is r , must be treated as a vector. The polarity
m, n

of this vector is arbitrary. It may be chosen to point

from n to N, or from N to N. The current elements must

also be treated as vectors and have to point in the direction

of current flow. The angle through which the element ^^^^

has to be turned about n to make it point in the same direc-

tion as r is a . Similarly, the angle through which the
m,n

element i dn has to be turned about N to point in the same

direction as
n

^' ^' these angles ultimately

appear in cosines, and since cosa-cos(360*-a ), it does not
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Fig. 3 Angles in Ampere's force formula

matter in which direction the element vectors are turned

to make them coincide with the distance vector. Bach element

and the distance vector lie in a separate plane. These

two planes intersect in the distance vector. Of the two

complimentary angles between the planes, y is that angle

through which one plane would have to be turned in order

to make the components of the current elements which are

perpendicular to the distance vector point in the same direc-

tion.

An important angle in Ampere's formula is e . It stands

for the angle of inclination of the two current elements

toward each other. It may best be visualized by transferring

one of the elements parallel to itself along MN until its

center coincides with the center of the other element. In

fig. 3 the dm element has been transferred from n to N and

e is the angle through which the transferred element has

to be turned about N to make it point in the same direction

as dn. Since e also appears in a cosine, its direction is

as arbitrary as that of a and B.
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To see how Ampere determined f( ) we resolve the

two current elements of fig. 3 into their cartesian components

shown in fig. 4. The elements i dm and i dn are then repre-
n n

sented as vectors m and n. pivoted at the centers of the

elements. The resolved components of the two current ele-

ments along the x, y. and z axes are given by

m(x) • i dm cosa ; iii(y) • i dm slna :

n{x) • i dn cos6 : n(y) • i dn sine cos

v

n n

n(z) - i dn sinB slnv :

n
(1.5)

Pig. 4 Resolved-component vector representation of the

two general current elements of fig..

3

Now each component of n interacts with each component of

n, resulting in a total of six contributions to the elemental

force between two current elements. Four of them are zero

according to a theorem first mvitoned by Ampere. Generations

of physicists have been uncertain how this theorem follows

from Ampere's experiments or how it could be deduced from

his postulates. Ue will refer to it as Ampere's Rule, leav-

ing the question open of it being a theorem or an assumption.

Ampere writes about it as follows (4]:
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"An infinitely small portion of current exerts no

action on another infinitesimal portion of a current

which is situated in a plane which passes through

the midpoint and which is perpendicular to its direc-

tion. In fact, the two halves of the first element

produce equal actions on the second, the one attrac-

tive and the other repellent, because the current

tends to approach the common perpendicular in one

of those halves and to move away from it in the other.

These two equal forces form an angle which tends

to two right angles according as the element tends

to zero. Their resultant is therefore infinitesimal

in relation to these forces and in consequence it

can be neglected in the calculations.

"

In comi lance with Ampere's Rule, the four vanishing

force contributions of the element components drawn in fig.

4

are

'^^ra(x),n(y) " ^^m(x),n(z) " ^^m(y),n(x) " ^^m(y),n(z) " °

(1.6)

A corollary of Ampere's Rule is that the mechanical

interaction of two current elements arises from two sets

of parallel element components, one of them being the set

rfhich lies along the line connecting the two elements, and

the other is the set which is perpendicular to that line.

Ampere then assumed that the two non-vanishing force contri-

butions may be expressed by

*^CK).n{K) - ^ -(x)
"('«>/'-i.„

(1.8)

where k is a numerical constant and the element components

are defined by equation (1.5). At this stage (1.4) may



be expressed as

-i I (dra.dn/ri «)(sino slnB cosy k cosa cos6)
m n li, n

(1.9)

Ampere then introduced the trigonometrical equation

cose - cosa cos6 « sina sinB cosy (110)

z

Fig. 5 Angles for determining the direction cosines of

of two general current elements

For proof of (1.10) he referred to a spherical triangle.

This relationship may also be derived with the help of fig.

5

from the direction cosines of the two general current ele-

ments. It is known that the cosine of the angle of inclina-

tion between two vectors is equal to the sum of the three

products of corresponding direction cosines of the two vec-

tors. With regard to fig. 5, the direction cosines along

the X, y, and z axes of the dm-element are

cosa ; cos[ (ir/2)-a) - sina ; cos 6 - co8(ir/2) - 0;

and those of the dn-element are

cos 6 ; co8[ (ir/2)'0] cosy - sinB cosy ;
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cost ( TT/2)- B] cos[ (Tt/2)-Yl - sinB siny -

Hence

cose - cosa cos 6 sina sin 6 cosy 0 x sinB siny

which confirms equation (1.10).

With (1.10) the force formula (1.9) may be transformed

to

« - -i-.i„(<in>-<in/ri „)(cose (k-l)cosa cosB] (1.11)
m, n m n n, n

After this step Ampere converts the cosines to partial dif-

ferentials of r^^ ^ with respect to small displacements of

the centers of the elements, N and N, along the lines of

action of the elements. These partial differentials are

further defined by fig. 6. In the limit as the displacements

of n and N tend to zero, and v^itlng r for the distance

between the elements, we find that

cosa - 3r/3m ; cosB - -3r/3n ; (1.12)

V

\

Fig. 6 Partial differentials of the distance vector with

respect to displacements of current elements
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Furthermore, If fl and N have the coordinates x^. y^, z^. and

"n- ''n- 'n-

r' . («,-«„)• . (y,-y„)' • (i,-i„)' (1.13)

Differentiating (1.13) with respect to m results in

mnin mnin inntn

(1.14)

and a second differentiation with respect to n gives

rO«r/am5n)»( Jr/siii)(5r/3n) •

- -Ox^/3ai)( a«^/5n)-( 5y^/ Hi)Oyj,/3n)-( Jz^^/tniX 3z^/ an)

(1.15)

But the ri9ht-hand side of (1.15) contains the negative

products of the direction cosines of the two current ele-

nents. Therefore

cose - -r( 9»r/ >B?n)-( i-/ ^)( 3r/ ^) (1.16)

Substituting (1.12) and (1.16) into the force equation (1.11)

transforms the latter to

iF • i.i (din.dn/r*)lr( 3*r/j»>»)»kOr/3iii)Or/an) J

(1. 17)

This My also be written

aF^
n

• l^l„(d«.dn/r«)(l/r'^'^)(a/an)lr**(ar/ai»)|

- 1 1 r'*'''' *(0/On)|r*'(.'»rA^ni) Idm.dn. (1.18)
I n
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Fig. 7 Ampere's wire-arc experiment

Ampere then invokes the result of another of his null-

experiments to determine the value of k. The experiment

to which he refers is sketched in fig. 7. To distinguish

it from the other null -experiments it will be called the

wire-arc experiment. It proves the mechanical force on

a circular arc section of a current carrying circuit 1,

due to current in a separate closed circuit 2 of any shape

and disposition, to be entirely perpendicular to the arc.

As shown in fig. 7, Ampere floated the arc section on two

mercury troughs and left it free to rotate the insulator

arm OX about the pivot O. During the experiment the arc

remained stationary as circuit 2 was brought up to it and

moved around. From this It could be concluded that the

tangential force on the wire-arc portion was zero.

Take (1.18) and substitute for 3r/3ra from (1.12).

^^m.n
" ^m^n^ r"^*^*^^ 0/^n)ir^ coso) dn (1.19)

That component of the mutual force which acts tangential ly
on the dm-element is obtained by multiplying (1.19) with
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cos 3. If it is to agree with experiment, this tangential

force, when integrated over all dn-elements in circuit 2,

must come to zero. Hence we may write

J^iF. „cosoc c i i dmrr"*^*^*^ *r'^cosi*(OA>n) (r**cos*)dn » 0.
"r m . n m n •*

* 1

(1 .20)

For integration by parts according to /udv-uv-/vdu we let

u • r-(2k.l)
. . .^2k.i) r'^^^'^^ 3r/3n

V • H r^k cosio ; dv - r*^ cosa O/anXr** cosa)dn

Therefore

^ ^^m n ^^^^ '
^m^n**'"^^*^°*'^^''^n'

* ^^^"^^ ^(cos« a/r» )dr 1

(1.21)

The limits n and n* of the first term are actually adjacent

infinitely short elements on circuit 2 and therefore the

first term of (1.21) vanishes. However, as Ampere pointed

out, many closed circuits can be imagined for which the

integral in the second term of (1.21) will not vanish.

Hence we are left with

k . - 1/2 (1.22)

as the only possibility of reducing (1.20) to zero, whatever

the shape or disposition of circuit 2. As can be seen from

(1.7) and (1.6), k determines the difference in the mutual'

interaction of equal prallel current elements between (a)

elements lying along the line connecting their centers,

and (b) elements set perpendicular to that line. With (1.22)

substituted into (1.8) it is evident that two eleinents of

unit strength and separated by unit distance repel each
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Other half as strongly, when lying along the line connecting

their centers, than they would attract each other when ar-

ranged transverse to this line.

With equations (1.11) and (1.22) Ampere wrote his force

law as follows

„ - -i«i„(d'n- dn/ri ^)(cosc - (3/2) cosacosB] (1.23)
m, n m n m, n

It was Ampere who first clarified the difference between

what we now call voltage and current. His force law proved

that the square of current must have the same dimension

as mechanical force. With this fact he defined an electrody-

namic unit of current which was smaller than today's electro-

magnetic unit of current measured in absolute ampere. To

obtain electromagnetic units of current, the electrodynamic

measures have to be multiplied by /?. With this change

of units we obtain Ampere's force law in the modern form

AP^ ^ - -l„l„(dm.dn/r* „)(2cos£ - ScosacosB) (1.24)
m, n m n m, n

This gives the elemental force in dyn provided the currents

i_. and 1^ are Inserted in absolute-ampere,m n

A most Important aspect of Ampere's theory Is that the

individual current element does not Interact with itself.

There is little or no discussion of this point in Ampere's

papers because he took it for granted that In any newtonian

model every elemental force must be the result of the mutual

interaction of two elements of matter.

Ampere considered current elements to be infinitely

divisible. This was in harmony with the ideas of the 1820 's

when electricity was still considered to be a subtile fluid

or continuum. In any case without the differential and

integral calculus Ampere would have been unable to calculate

forces. This is an example illustrating how the availability
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of mathematical tools shapes contemporary physics. If the

Ampere electrodynamics is to gain a place in modern physics

it has to be related to electrons and ions which impose

a lower limit on the size of current elements. This clashes

with the differential calculus but may become manageable

with computers.

An often voiced contemporary criticism of current ele-

ments is that they are a fictitious concept and produce

discontinuities at straight line junctions. This fact was

also of concern to Ampere. He went to great length to demon-

strate to his own satisfaction that a smooth wire curve

could be adequately represented with his discontinuous ele-

ments. One of his null -experiments was specifically designed

to prove this argument. The essential features of the expe-

riment are shown in fig. 8. It will be referred to as the

5 AC
Pig. 8 Ampere's bent-wire experiment

bent-wire experiment. AA'DE is a rectangular current loop

in a vertical plane and suspended so that it is free to

rotate about its vertical center line. As before, for the

sake of clarity. Ampere's additional circuit to offset the

effect of the terrestrial magnetic field Is not shown in

fig. 8.
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BB' is a straight wire parallel to AA' and placed close

to it. CC is the bent wire arranged with its axis parallel

to and at the same level as BB' and AA'. Ampere fitted

the bent wire Into a narrow slot of a wooden post and de-

scribed is as being twisted over its entire length in the

plane perpendicular to BCC'B' and such that the wire at

no point departed more than a very short distance from the

midpoint of the slot. The experiment proved that if the

wires BB' and CC carried currents in the same direction and

were equidistant from AA', as indicated in fig. 8. no turning

moment was exerted on the loop AA'DE. Hence, depending

on the sign of the current in AA', the bent wire CC exerted

the same force of attraction or repulsion on the center

wire as did the straight wire BE*.

B A

8' A'

Fig. 9 Equivalence of bent and straight wire sections

Based on this experimental result Ampere argued a curved

wire section , as for example AA' in fig. 9, was equivalent

to the straight section BB' provided B coincided with A

and B' with A'. For an explanation he offered the vectorial

cancellation of the transverse subelements shown by broken

lines in fig. 9, and the vectorial addition of longitudinal

subelements. Ampere believed the equivalence to hold also

when AA' was a three-dimensional curve, although the bent-

wire experiment was only a two-dimensional test.

For the few years during which Ampere concerned himself
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with electrodynamics the published record shows little dis-

cussion of the current distribution over the wire cross-

section and to what extent this may be compatible with a

line representation of the current element. At his time

most experiments were carried out with a relatively small

number of galvanic cells and the conductors were thin wires.

The three-dimensional representation of the current stream

was not a pressing issue. Ampere's theory can be adapted

to conductors of large cross-sect ion by subdividing them

into thin wire-like filaments. This will be undertaken

in later chapters.

Energy conservation was introduced after Ampere's death.

Blectrodynanic forces are capable of doing work and they

must therefore be associated with a store of energy. It

was left to Ampere's followers and opponents to illucidate

this issue which, to a large extent, has been responsible

for giving the electromagnetic field preference over Ampere's

matter-bound interaction model.

Equation (1.24) is an empirical law which is not known

to have failed during the more than 160 years of its exis-

tence, so long as it is applied only to metallic conductors.

The method by which Ampere deduced his law from experiments

is of academic interest, but it has no bearing on the validi-

ty of the law. Like the scaffolding used to erect a build-

ing, the method of deducing an empirical law nay be discarded

as soon as the law has been found.
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NEUMANN'S ELECTRODYNAMIC POTENTIAL

Twenty years elapsed between the conclusion of Ampere's

study of electrodynamics and F.E. Neumann's first memoir,

in 1845, on the theory of electromagnetic induction. This

was Franz Neumann, the father of Carl Neumann. The latter

also became one of the famous electricians of the nineteenth

century. Much had happened in these twenty years. Faraday

discovered electromagnetic induction in 1831. There was

a general awakening to the atomicity of electricity.

By theoretical reasoning Neumann [8, 9] arrived at the

concept of the electrodynamic potential. With the notation

used for Ampere's theory, this may be expressed as

P« „ - ^ H i„iJ/(cose/r^ „)dm.dn (1.25)
m, n m ni^ m, n

This is the mutual potential of two closed circuits, m and

n, carrying currents i^ and i^. The double integration
ro n

Involves each pair of current elements twice, but Ampere's

electrodynamics assumes them to interact only once. Neumann

takes account of this by the factor of This has to be

born in mind when summing the potential contributions of

finite elements by computer when time may be saved by comput-

ing each interaction only once. Neumann felt uncertain

about the sign of the electrodynamic potential until, with

the help of 'virtual work', he had been able to derive Am-

pere's force law from the potential.

Neumann is best remembered by his mutual inductance

formula

- ± // (cose/r^ j^)dm.dn (1.26)
mn

which arises directly from the electrodynamic potential.

The sign of mutual inductance is also determined by virtual
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work considerations. In the last equation the factor of

has been quietly dropped, but it applies just as much

to (1.26) as it does to (1.25). Many precise inductance

calculations are based on Neumann's mutual inductance formu-

la. Maxwell incorporated it into field theory and in the

process changed its meaning to magnetic flux linkage per

unit current.

Comparing the electrodynamic potential (1.25) with Am-

pere's force law (1.24), it will be seen that the dimension

of the potential is force tiroes distance, or energy. Any

change in the current intensities or the relative position

of the current elements which increases the potential re-

quires work to be done on the two circuits, while energy

is being stored in them or by them. Conversely, if the

potential is reduced, stored energy will be transformed

to mechanical work or Joule heat or both.

While Neumann speaks of work, free energy divorced from

atter was not considered in his mathematical analysis.

In the Ampere-Neumann electrodynafflics P appears to be poten-

tial energy, for the framework of this theory lacks a mecha-

nism by which the slow lateral displacement of a constant

current could involve the transfer of kinetic energy. Though

both Ampere and Neumann used the term 'current', neither

of them ascribed to it momentum, as Maxwell would do later.

Neumann changed his mind about the sign which should

be given to the electrodynamic potential. In his first

paper [6] he defined it as follows:

"The potential of two closed currents of unity inten-

sity, relative to each other, is the sum of the pro-

ducts of the elements of one current with the elements

of the other, each product of two elements being

multiplied with the cosine of the angle of their

inclination and divided by their distance.

"
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Following this definition he used (1.25) with the positive

sign. In the second paper [9] presented two years later

in 1847, he repeated the definition but inserted "the nega-

tive ha If-sum" for "the sum". Prom then onward he used

(1.25) with the negative sign.

In potential theory there have always existed difficul-

ties in agreeing on a universal sign convention. Kellogg

[10] points out that the most popular rule is to assign

negative potential energy to elements of like sign which

attract each other, and positive potential energy to elements

of like sign which repel each other. Gravitating particles

are an example of the former class and electrical charges

are an example of the latter. If elements have signs at-

tached to them they are scalar quantities, and current ele-

ments are not of this nature. They have definite directions

and therefore are vectors. Hence it would seem the potential

energy of current elements and circuits made up of these

elements may sometimes be positive and sometimes negative.

What could be meant by negative potential energy? We cannot

conceive of less than no energy. Hence positive and negative

potential energy must be two kinds of energy, like positive

and negative charge are two kinds of electricity. One kind

of potential energy would be associated with forces of at-

traction and the other with repulsion. However, unlike

charge, the two could not be neutralized by putting them

together.

Let us now examine the particular case of two very long,

parallel, straight wires m and n, as sketched in fig. 10.

In case (a) of that figure they carry currents in the same

direction. From experience we know the wires will then

attract each other. Following common practice In potential

theory we should say they are associated with negative poten-

tial energy. Now assume an externally applied force p^ tends

to increase the distance of separation x and brings about

the displacement 3 x by moving n to n'. This external force
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has to do work and expend an amount of energy equal to F^^^x.

At first it may be thought that this energy is being added

to the stored potential energy. However, this cannot be

so because the magnitude of the electrodynamic potential

of (1.25) decreases as a result of the lengthening of the

distances between pairs of contributing current elements.

Not only does the mechanical source which sustains the exter-

nal force supply energy, but the potential energy store

also gives up energy. What absorbs these two streams of

energy? As the currents are assumed to remain constant,

no additional Joule heat will be dissipated. As we will

show later, according to Neumann's theory all this energy

flows to the tvo electrical sources which maintain the cur-

rents. Some of the Joule heat normally furnished by these

sources will, during the transition of one conductor from

n to n', be supplied by the potential energy store and the

mechanical energy source.

m n n" m n' n

1 'n
,

1 'n 'm,
1

'n •
in

1

Fig. 10 Electrodynamic potential energy of straight and

parallel currents
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In the case of fig. 10(b), where the currents flow in

opposite directions and the conductors repel each other,

the displacement 3x from n to n' again requires the supply

of energy by the mechanical source sustaining the external

force, but now the magnitude of the stored energy increases

because of the shortening of element distances. This opens

the possibility of all the energy provided by the mechanical

source being stored as potential energy, and the electrical

sources maintaining the currents are either not involved

in the transaction or they exchange energy with each other.

Neumann related the reciprocal force of repulsion or

attraction between two circuits m and n to the mutual poten-

tial of the circuits by

where x denotes a particular direction in which the virtual

displacement 3x takes place. At the same time he chose

the negative sign for the potential of (1.25). The cosine

of ^ then decides whether. In any particular circuit arrange-

ment, the mutual potential energy turns out to be positive

or negative.

When applying Neumann's sign convention to the two con-

ductorarrangements of fig. 10 It Is found, first of all,

that

for fig. 10(a): cose - +1 (1.28)

for fig. 10(b): cose - -1 (1.29)

Therefore

for fig. 10(a): - -i^^i^ //(l/r^^)dra.dn (1.30)
mn '

for fig. 10(b): - i^i^ //(l^Vn^^ *^ (131)



28

In this way attraction becomes associated with negative

potential energy and repulsion with positive energy. Taking

the gradient of the potential energy with respect to x we

find

for fig. 10(a): 3P^ „/3x - i^i^ //d/r^ „) Or/ 3x)dm. dn
ra, n ran'' In, n

mn

(1.32)

for fig. 10(b): „/3x - -i„i„ //d/r^ „) ( 3r/ 3x)dm. dn

mn

(1.33)

So we arrive at the interaction force in the specific direc-

tion X given by

(Vr,>x -'Vn''" • *Vn //d/r; „)(Jr/ax)<i«,.dn (1.34)

mn

In the case of fig- 10(a) the force defined by this last

equation is negative, signifying attraction, in agreement

with experience. Similarly, for fig. 10(b), the force be-

comes positive or repulsion. Hence Neumann's sign convention

gives the correct direction of the forces in the specific

example of fig. 10. He extended this proof to the general

case of two circuits of any shape. The potential function

ultimately adopted by Neumann therefore was

\.n -Vn //«=o.c/r. „)d..dn (1.35)
mn

which at times has been multiplied by H to allow for a double

summation of element interactions. Equation (1.35) will

henceforth be used in preference to (1.25).

Neumann did not set out to derive the electrodynamlc

potential. He discovered it while developing a theory of

electromagnetic induction based on Ampere's force law.

It means (1.35) must be compatible with (1.24). This can

be shown in the following way. The x-component of the ampe-
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rian force on a current element ^ dm due to a closed current

circuit n may be written

/(AF ) dn - -i dm i /(cose /r2)(2cose- 3cosa cosB)dn
' m, n X m r, x
n n

(1.36)

where 6 is the angle between the distance vector r
r,x in,n

-r and the positive x-dlrection. It should also be noted

Now we consider the integral

/(l/r')coso cose dn - /( l/rM ( ^r/ Shi) (dx /dn)dn (1.37)
n n

where (dx /dn)-cos6 is the cosine of the angle between
n n, X

i^dn and the positive x-direction. But (1.37) may also

be written

- /(dx^/dn) ( 3/ 3m) (l/r)dn

- /0/an)[(x^-Xj^)0/3m)(l/r)]-(x^-Xj^)0'/ anan)(l/r) dn
n

(1.38)

Being a closed integral, the first term of (1.38) vanishes

on integration because all quantities involved have the

same value at both limits. Therefore

/(l/r* )cosa cose^ x^"'~/^'Sn~^i^^ (1.39)
n ' n

0/3n)(l/r) - -(l/rMOr/3n)

02/9m3n)(l/r) - (2/rM ( ar/ 3bi) Or/ an) -( l/r* ) ( 9*r/ am ah)

(1.40)
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But from (112)

(ar/ain)Or/3n) - -cos a cose
(1.41)

and from (1.16)

-COSE - rO'r/3n»3n) Or/ am) Or/ an)

so that

(a«r/9in3n) - -[(cosO/r] (l/r)cosa cosB (1.42)

Substitute (1.41) and (1.42) into (1.40).

(3 «/ 3B3n)(l/r) - (2/r»)(-coaa cosB )[ (cose )/r> )-(l/r' )cosacos6

- (l/r>)(co«c -3 C080 COSB) (1.43)

Substitute (1.43) into (1.39).

/(l/r*)co«o C086 dn -

n

- -/(cosBj. jj/r* )(cose - 3co8a cosB)dn (1.44)

By conbining (1.36) with (1.44) it can be shown that

/(Ap^^)^dn - i^d« ijj/(l/r«)(co«£ couQ^ j^-coso co»On,x^^
n ' n

'

CI. 45)

To evaluate the integral in (1.45) we follow Neuaann's

original aethod [B] and resolve each currant element with

respect to k, and z, as indicated in fig. 11. n total

of nine interactions have then to be taken into account

between the six ooaponents. Their contributions to (1.44)

are listed in table 1. We note that
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( ar/ 3X )--( 5r/ 3x ); ( 3r/ 3 y ) ( 5r/ ) ; ( 3r/3 )--Or/ 3z„)m n m n m n

This and table 1 enables us to write (1.45) as follows

/(:1F ) dn -

n m, n X

- i I /([(3r/3x_, )-(3r/3x„)J(dx^dx /r«)*( S-/3y„)(dy^dx,/r«)
n

- Or/ )(dy dy^/r')»( 3r/ 3 ) (dz^ dx^ /rM-(3r/ax^ )(d^d^ /r« ) }

(dx^dx^»dy^dy„»dz^dz„)( 5/3x„)(l/r) )
in n n n n n n

(1.46)

On integrating the first term around the complete circuit

n this will disappear because it represents the differential

of (1/r) which has the same value at both limits. Therefore

the x-component of the force acting on ^^"^^ is

n n

(1.47)

With direction cosines it can be seen that the first bracke-

ted factor of (1.47) is equal to dn cosg. The total force

of attraction or repulsion between the entire circuits m

and n. resolved with respect to the x-direction. is then

given by

<^m,n>x -J/ <'^Vn»x^"'-*'"
' /O x

)j J (cos./r )dm.dn

i1.48)

Equation (1.48) proves the amperian forces on current ele-

ments to be consistent with Neumann's electrodynamic poten-
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Table 1. Contributions to (1.44) of the current element

coaponents shown Inf fig. 11

Inter- coso cos 6^ _n, X
action cos a cos 6 cosc cos 6 -cose cos 6

dx dx
n

dy dz
n

dz dx
n

ar/ax

ar/ay

ar/az

1

0

0

1

0

0

1

0

0

1 ar/ ax^ ar/ ax.- ar/ ax
n n n

0 0

0 0

1 ar/ ax - ar/ ax
n n

0 0

0 ^^^B
0 0

1 ar/an -ar/ak
n n

Since any straight line connected to the two circuits

and n aay be chosen as the x-axis, the three axes can

be interchanged and the cartesian coaponents of the mutual

force are therefore
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(1.49)

According to (1.48) the mutual force between two closed
circuits is made up of contributions which take the form

(AF ) - i i dm.dn cose 0/3x)(l/r „)
m, n m n m, n

and when the x-direction coincides with r„, ^ this simplifies

to

^^m.n -\n^(^'"-<^"/^m,n><=°s ^

Equation (1.50) may be called Neumann's force law for current

elements. Its use must be restricted to computing the reci-

procal reaction force between two closed metallic circuits.

This law will not reveal balanced internal stress producing

forces in either circuit. The interaction of current ele-

ments of the same circuit can generate tension and compres-

sion which are accurately predicted by Ampere's force law

(1.23). Neither Ampere nor Neumann studied the distribution

of ponderomotive forces around a single isolated circuit.

Difficulties with diverging integrals probably prevented

them from undertaking this task.

A long forgotten aspect of Neumann's theory is the deri-

vation of turning moments, or mechanical torques, from the

electrodynamic potential. Consider two rigid, closed

circuits m and n carrying currents 1^ and ^ , respectively.

If circuit n is fixed to the laboratory frame, circuit n

will exert torques (T ) , (T ) , and (T 1 about arbi-
m, n X m, n y ^ m, nz

trarily chosen cartesian coordinates x, y. and z. Alterna-

tively, if m is fixed, n will exert torques of the same

magnitudes but in opposite directions about the coordinate

axes.
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To show the relationship between torque and electrodyna-

nic potential we examine (T ) exerted by circuit m about
n z

the z-axis, with <p being the anqular displacement. Follow-
z

ing Neumann's method and with the aid of fig. 12 it will

be seen that

But from (1.46)

^^^"mn^x**" " "SB^/f^3/3"'^^^/'^^**^i ' 0/3'Si,)(l/r)cose dn]
n ' n

(1.52)

/(AF ) dn - -i.i^/((3/3«)(l/r)dy^ - 0/3y^ ) ( l/Dcose dn)
1^

m, n y n n m

(1.53)

Substitution of (1.52) and (1.53) into (1.51) and rearranging

the terms gives

(T ) - i i //cose[x (a/ay )(l/r) - y (3/3x )(l/r)]dm.dn
n, n z njgjj n m

"^i^^^^^^i^^^n^^"^
" y^Ox^/3n)0/3m)(l/r)}dm.dn

mn

(1.54)

Integrating the second tara of (1.54) by parts gives

-l«in[/(l/r)t>^(ayn/3n) - y.OHn/an) ))j;i

n 2

-i^i^//(l/r){(aj^/am)(ayjj/an) - ( ay^/ Bm) ( Sx^/ 3n) Idm.dn
nn

(1.55)

The first term of (1.55) has the sane value at both limits

of r and therefore vanishes, so that (1.54) may be written
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Fig. 12 Torque from electrodynamic potential

(T ) -i i //cosclx 0/3y.)(l/r)-y^(9/5J(L)(l/r))d«.dn
m,n z m mm mm

i 1 r/(l/r)l(3x /5m)(3y / 3n)-Oy^/ ?m) ( 5x^/ 3n) Jdm.dn
m n* ' m n m n

tun

(V.56)

As is the angular displacement about the z-axis it follows

that

{.^/U )(l/r)-0/3x )(l/r)(cX^/rV2)^(3/3y„)(l/r)Oy„/3^2^

(1.57)

cose- (ox /cn)(5x / :-m)«(5y/rn)( ry /:-«)•( rz^/ -m)( 5^ /3m)
n m n

(1.58)
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(3/3*2 ) (cose) - (3j^/3n)( 3/am)( 3)^/31^)

( 3y^/3n)( 3/3in)( dy^ij/ 3i(^ )( 3^/3n)( 3/ ^)( 32^/ 3(^ )

(1.59)

C^/3t)-0 (1.60)

Substituting (1.60) into (1.57)

i^/H^)n/r) - )^( 3/3y^)(l/r) - ( 3/ 3^ ) ( 1/r) (1.61)

and (1.60) into (1.59)

(3/3\|^)(cose) - Oyj^/an)( aj^/an) - OJ^/3n)Oy|„/3in) (1.62)

The angular gradient of the electrodynamic potential is

ijiji (3/3l)//(cose/r)dB.dn - i^i„ //[cos e( 3/ 3\|^ ) (1/r)
mn mn

(l/r)( 3/ 3i|^)(cosc)]din.dn

(1.63)

With (1.57) to (1.62) the angular gradient of the electrody-

nanic potential aay be expressed by

i i (3/3K» ) //(co8C/r)d«.dn -

* mn

- i^i^//co8e[x^(3/ay^)(l/r)-y^( 3/ cb^ ) (i/r) ]din. dn

i^i^T?(l/r)[Oy^/3n)(3jc^^/3iii)-(3x^/3n)(3y^/3in)]din.dn

(1.64)

A conparison of (1.64) with (1.56) shows that

(T. - i.i^(3/at) /Aco8e/r)dta.dn CI. 65)'HZ an * mn

or with (1.35)
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Similarly

This completes Neumann's proof that the mutual torque of

two rigid current-carrying circuits, with respect to any

arbitrary axis, is the negative angular gradient of the

electrodynamic potential.

Neumann's electrodynamic potential is a quantity which

in field theory is called stored magnetic energy. The poten-

tial given be equation (1.35) refers only to the mutually

stored energy between the two circuits. The total stored

magnetic energy would contain additional contributions from

the interaction of current element pairs residing in the

same circuit. This self-potential and the resulting reaction

forces between parts of an isolated circuit were not consi-

dered by Neumann. He was probably stumped by the same inte-

gration singularities which are still baffling us today.

It will later be shown how this difficulty can be overcome

with computer aided finite current element analysis.

In Neumann's theory the magnetic energy of metallic

circuits is associated with the forces of attraction and

repulsion of current elements. These elements consist of

the substance of the conductor material. The energy never

becomes detached from the matter elements. In contrast

to this matter theory, modern relativistic electromagnetism

assumes that the energy is stored in the field or vacuun.

Some of it resides in the vacuum space that is actually

being occupied by the conductor. For the magnetic field

energy to change in magnitude it has to move in and out

of the conductor material. This poses philosophical ques-

tions which are absent in the Ampere-Neumann electrodynamics.

One of them would be: by what mechanism can magnetic field

energy be recalled to the conductor from near and far zones

of space?
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Neumann's virutal work method of deriving mutual pondero-

motive forces and torques from the change in stored magnetic

energy has survived to this day. Formulas (1.48) and (1.65)

are often preferred to calculations involving the Lorentz

force. The double integral in these two equations will

be recognized as the mutual inductance between the two cir-

cuits. This may be determined by a measurement with con-

veniently small ac currents which avoids involved computa-

tions .

It has become common practice to calculate the reaction

forces between two parts of the same circuit also with equa-

tion (1.48), but the mutual inductance between two circuits

is then replaced by the selfinductance of the isolated cir-

cuit. This procedure gives correct answers. It cannot

be traced back to Neumann. Whilst the Lorentz force gives

the same result as (1.48) for two circuits, it disagrees

with Ampere's force law, and therefore (1.48), on the tension

in an Isolated circuit. Hence the use of (1.48) with a

selfinductance gradient constitutes a calculation with Am-

pere's law and not with that of Lorentz. This fact is rarely

appreciated by engineers using the virtual work concept

for force calculations.

NEUHANN'S LAWS OP INDUCTION

As mentioned before, Neumann discovered the electrodyna-

ic potential while working on his theory of electroaagnetic

induction. He started by setting up an elemental equation

of induction due to the relative motion of two current ele-

ments. For this purpose he assuned that the electromotive

force, e.m.f., induced In one of the elements depends on

the current intensity in the other and also on the amperian

force exerted between the elements which would arise if
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the element experiencing the induction would simultaneously

carry unit current. In this connection Neumann described

the force as an action, instead of an interaction, to empha-

size that induction can also occur when no current flows

in one of the elements and therefore no mechanical force

exists between the two.

Neumann's elemental law of induction due to relative

motion may, in the notation employed in previous sections,

be expressed as

where Ae is the induced e.m.f. in the conductor element
n

dn shown in fig. 13. The element dn is taken to move with

velocity v^ along an arbitrary x-direction fixed relative

to the position M of the inducing element ijQdm. AF„ is

Ampere's mechanical force given by (1.24). Although Neumann

assumed i^'l* (1.68) will hold for any value of this current.

The angle 6^ ^ lies between the distance vector r„ and

the positive x-direction. The negative sign arises from

Lenz's law which Neiimann quotes as follows [8]:

"If a metallic conductor moves relative to, and in

the vicinity of, a galvanic current or magnet, the

current induced in the conductor will flow in such

a direction that, were the conductor at rest, it

would be set in motion in the opposite direction,

it being understood that the line of relative motion

is fixed.**

(1.68)

Fig. 13 Diagram for equation (1.68)
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Neumann treated the proportionality of the Induced e.m.f.

to the relative velocity and to the inducing current 1 as an
m

experimentally established fact following from Faraday's

and later work. The elemental (differential) law of induc-

tion (1.68) accords with the Newton-Ampere philosophy of

simultaneous matter interaction at a distance and Ae should
n

at all times be proportional to , irrespective of any

relative acceleration. However, Neumann felt a little uncer-

tain on this point and on a number of occasions he refers

to the 'stationary state' in which changes in current inten-

sity and relative position of the elements progress at a

rate which is slow compared with the 'Fortpflanzungsgeschwin-

digkeit' (velocity of travel) of electricity. As an example

of non-stationary phenomena he quotes discharge currents

from capacitors. In order to allow for delays between the

cause of induction and its effect, Neumann makes a certain

dimensional constant a function of time but does not proceed

with the analysis of non-stationary phenomena. This constant

was dropped In later years and Neumann's law of Induction

has ever since been assuned to be a law of simultaneous

matter Interaction.

Neumann noticed the induced e.m.f. to be related to

the rate of change of the electrodynamlc potential. This

can be seen froB (1.68), for

Vj^cose^ ^ - dr/dt (1.69)

If we assume with (1.35) that the mutual potential of two

closed currents is the sun of the elemental potential contri-

butions ^ from all current element pairs, with one ele-

ment In either circuit, (1.66) may be given the form

In Afin - (d/dt)(APb,n) (1.70)

The left side of this equation represents power or energy

flow to element dn and the right side gives the rate of
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change of mutually stored potential energy of the two ele-

ments.

Neumann went to great length to show that a similar

relationship applies to two complete circuits m and n.

This can simply be written

i« e« (1.71)
n n m, n

Substituting for the electrodynamic potential from (1.35),

the total e.m.f. induced in the circuit n becomes

e^ - -Cd/dt) //(ij^jCose/r^jj ^)dm.dn (1.72)
mn

or

e„ - -(d/dt)(i_M„ „) (1.73)
n m m, n

where
^^fg

mutual inductance of the two circuits also

given by (1.26). The step from (1.72) to (1.73) may be

taken as the definition of Neumann's mutual inductance in

terms of matter interactions rather than magnetic flux link-

age. Modern textbooks on electromagnetism call equation

(1.73) Faraday's law. Without wishing to take away anything

from the important experimental achievements of Faraday,

it would be historically correct and fairer to F.E. Neumann

to describe equation (1.73) as Neumann's law of induction.

When computing mutual Inductances with Neumann's formula

it is necessary to assign directions of current flow to

the two closed circuits, as only this will make the angle

c unique for every element pair. When the directions of

current flow are not known when the mutual inductance is

being computed. It is customary to choose directions which

will make ^ positive. Reversing the direction of current

flow in one of the circuits will not change the magnitude

of the mutual inductance but reverse its sign.
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Provided the conductor elements belong to two closed

circuits it follows from (1.72) that the elemental e.m.f.

may be expressed as

Le /dn - -(d/dt) ( ( i^dm cose)/r„ „] (1.74)
n In m, n

The quantity inside the square brackets turns out to be

the magnetic vector potential of the current element 1 dm at
m

point N, the center of the conductor element dn. Neumann

wrote his papers before vector analysis was invented and

he did not mention the magnetic vector potential. Denoting

the vector potential by A, Neiaraann's law of Induction may

be stated as

Ae/dn - -(d/dt)A/^ (1.75)

where the vector potential is given by

AA - i dm/r ; AA - i dn/r_ „ (1.76)
-m,n B— m,n —n,m n— m, n

Conparing equation (1.75) with (1.70) reveals just how close-

ly the magnetic vector potential is related to the electrody-

namic potential. If it is permissible to associate an indi-

vidual current element with magnetic vector potential then

it should be equally permissible to associate it with elec-

trodynamic potential.

The vector potential is not a reciprocal interaction

parameter because it Involves only one current element.

Therefore

As a consequence of (1.35), the electrodynamlc potential

of a pair of current elements belonging to separate closed

circuits is
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(1.78)

and with (1.76) this is equal to the scalar products

Closed conduction currents may induce e.m.f's in open-

circuited conductor sections. This problem was examined

by Neumann. Consider a conductor n consisting of Just a

single element dn. In order to obtain the action (force)

of the closed current i„ on dn, this single element mustm
be assumed to carry unit current (ij^'l ab-amp). From (1.70)

and (1.71) it follows that

V®n Cd/dt)[-i„dn i^/(cose/r„^)dm]

£^e^ - -dn(d/dt)i^/(cose/r^ j^)dm (1.80)
m

An angle function which first occurred in equation (1.4)

has the general form

f(a, B,e) - 2cosc - 3cosa cosB (1.81)

But Ampere's wire-arc experiment proved that, when one of

the circuits is closed, we may set

3cosa cosB - cose (1.82)

and then

f (a, 6, e) - cose (1.83)

It is this restricted angle function which is being used

in (1.80).

If the conductor n comprises more than one element and
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extends from nl to n2, the e.m.f. induced in this length

of conductor is

n2
e - (d/dt)[i // (cose/r )dm.dn (1.84)
n mnml ""'H

Neumann's theory of electromagnetic induction pertaining

to metallic conductors survives in modern field theory.

The words around the formulas have changed. Where Neumann

spoke of interacting conductor elements and complete circuits

we now talk of magnetic flux linkage. The e.m.f. per unit

length has become the electric field intensity, and so on.

The flux linkage idea breaks down when one of the circuits

is unclosed. However, Neumann's method can deal with the

e.m.f. in an unclosed conductor, as has been shown with

equation (1.84).

Since the electrodynamic potential was derived from

Ampere's force law, and since this potential also furnishes

the law of induction preserved in field theory, one might

expect Naxirall's equations to contain Ampere's force law.

This is not the case. Maxwell [14] himself was aware of

the fact that field theory is apparently not based on a

unique force law. He strongly endorsed Ampere's law but

thought the Grassmann formula would do equally well. This

latter formula will be discussed in the next section. It

has become the magnetic component of the Lorentz force acting

between tvo moving charges and thereby has been thought

to supersede Ampere's force law.

Classical physics was built on the pillars of three

empirical laws, those of Newton, Coulomb and Ampere. Modern

physics seems to rest on three floating platforms: the field,

relativity and quantized free energy. Newton's refusal

to let hypotheses prevail ushered in the first two centuries

of quantitative science and brought us the spiritual shackles

of determinism. Nodern physics has broken out of this con-

finement and set the human spirit free and roaming once
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more, as it was in the days of the alchemist and aether

whirlpools. The first step toward the new physics was taken

by Maxwell when he gave us a theory that was not based on

an empirical force law.

GRASSNANN'S FORCE LAW

Ampere and Neumann concerned themselves not only with

the interaction of linear currents in metallic conductors

but also with the mechanical and electromotive forces between

magnets and mixed systems containing magnets and current

circuits. Ampere's concept of the magnetic molecule has

proved to have lasting value and Neumann showed the equiva-

lence of a current carrying circuit and a magnetic shell

bounded by the circuit. However, the present book does

not deal with the behavior of magnetic materials and concerns

itself solely with the interaction of electric currents

in non-magnetic metals. In this restricted sense electrody-

namics is the science of metallic current elements.

The force law for two current elements which has been

used almost to the exclusion of all others during the past

eighty years was first proposed by Grassmann [11] in 1845,

the same year Neumann published his theory of induction.

Grassmann 's is an unsymmetrical law and therefore has to

be stated by two equations. One is for the force on element

dm, to be %/ritten AFn,, and the other for the force AP„ acting

on element dn. In vector form, but otherwise with the pre-

viously employed notation, these two equations may be written

AP • (i 1 /r' )dmx(dnxa )

CI. 85)

- Ci-.ir,/r* )dnx(dmxa^"n ran m, n — -r,n

where the direction of the unit distance vectors a and
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2^ ^ is along the line connecting the elements and pointing

toward the elenent at which the force is being determined.

To see the connection with the Aapere-NeuiMnn electrody-

namics It is best to resolve the triple vector products

in (1.85) according to

A«(B«C) - B(A^) - C(A-l) (1.86)

Applying (1.86) to (1.85) results in

AP, . flC(l/ri,n)i,i„d. coso, -
tr.,<»/«-i n)i,i„d..dn cose

tr^ - n)l,lnOn cos«„ - tr.n«>'"'i.n>*-*n<«» «""

(1.87)

The angles and must not be confused with o and B in

Mvwre's force law (1.24), but c is the same in both laws.

Pig. 14 Angle convention for Aapers's snd Orsssaann's force

laws (1.24) and (1.87)

Figure 14 further elucidates the angle oonvantion of the

two eleasntal foros laws.

According to (1.85) a pair of currant aiaMnta do not

attract or repel each othar, but each aspariancea a force

perpandioular to itaalf whioh has its oauaa in the existence

of the other. PurthanMra, thia foroa llaa in the plana

containing the alaasnt in «usation and tha line connecting

both eieaanta. Orassaann aiao polnta out that, aa a result
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of Ampere's Rule (see page 13), the interaction of two cur-

rent elements can always be reduced to a two-dimensional

problem. With respect to fig. 14 this means if we wish to

determine the force on element dm we need only consider

that component of the other element which lies in the plane

of dm and the line connecting the two elements. In compli-

ance with Ampere's Rule the component of the other element

which is perpendicular to this plane produces no force on

the element dm. Therefore the interacting components of

two current elements and the Grassmann forces all lie in

the same plane.

The abandonment of mutual attraction and repulsion be-

tween matter elements of electric conductors, and the viola-

tion of Newton's third law of motion which this entailed,

signalled the end of classical physics. The Grassmann and

Lorentz force laws required a new mechanics which was to

become that of si>ecial relativity. Even if the Hichelson

and norly experiment had never been carried out, the theory

of special relativity would have been an inevitable conse-

quence of the Grassmann and Lorentz electrodynamics. This

aspect will be further discussed in connection with measure-

ments of field-energy momentum conservation.

In the expanded form of Grassmann 's force law, (1.87),

there appears a newtonian term of repulsion or attraction

which is exactly equal to Neumann's force term (1.50) for

a closed circuit. The remaining term of the Grassmann formu-

la is a force in the direction of the other current element.

This term violates Newton's third law. It will be called

the relativistic term of the Grassmann or Lorentz force.

Whittaker [6] and a number of other authors have shown that

when the Grassmann force on, say, dm is summo d for a closed

current circuit n, all the relativistic contributions add

up to zero and only the force contributions made by the

newtonian term survive. Precisely the saae result %M>uld

have been obtained with Ampere's force law. Hence if in
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the Grassnann (or Lorentz) electrodynamics forces are being

calculated due to closed iietallic circuits we automatically,

and in most instances unknowingly, slip back into the Ampere-

Neumann electrodynamics. This is the explanation why the

field theory of electric machines and devices has no problems

with Newton's third law and special relativity appears to

be irrelevant. This state of affairs is often wrongly attri-

buted to the small magnitude of relative velocities. Special

relativity produces large effects at the lo«#est relative

velocities, but with closed circuits these effects integrate

to zero and thereby seem to vanish.

The magnitude of the perpendicular force acting on,

say, dn Grassmann gave as

- l-i,»C<>"-^/rl «)slne (1.88)
n m n m.n

where 6 is the angle of the Biot-Savart law (1.2), but with

the ds-element replaced by the dm-eleaent. Figure 15 depicts

the connection between the Oris—nn and Biot-Savart laws.

Fig. 15 Derivation of Grassmann '
s

• force from the Biot-Savart

law

The Biot-Savart law gives the magnetic field strength dH

at N due to the dm ourrent element. Therefore
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" ^n— (1-89)

This last equation clearly reveals that the Grassmann force

is actually the magnetic component of the Lorentz force

of modern field theory.

It is rather surprising to find Grassmann enunciating

his law twenty years before Maxwell wrote his field equations

and only Faraday spoke of magnetic flux. Grassmann was

a mathematics teacher at a German high school. He was work-

ing in isolation of Neumann, the first professor of theoreti-

cal physics at the University of Koenigsberg, East Prussia.

Grassmann 's great achievement as a mathematician was the

introduction of the vector calculus. There is some suspicion

that he proposed his new electrodynamics [11] mainly in

order to have a good application of vectors. He certainly

achieved this with equation (1.85). The Lorentz force ex-

pression did not appear until the 1890 's, fifty years after

Grassmann published his electrodynamics. Lorentz was led

to (1.89) by his theory of electrons [29].

On Grassmann' s own authority, his analysis was prompted

by two objections to Ampere's force law (1.24). The action

of the forces along the straight line connecting the current

elements Grassmann considered to be an arbitrary assumption.

He could see no reason why these elements should behave

like gravitating or charged particles which vere scalar

quantities while current elements had direction and were

vectors

.

As far as his second objection to Ampere's law is con-

cerned he said [4]:

"The complicated form of this formula arouses suspi-

cion, and the suspicion is heightened when an attempt

is made to apply it. If, for example, the simplest

case is considered, in which the circuit elements

are parallel, so that e -0 and a -6, the Ampere expres-
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sion becomes

(i«i«dm.dn/r2 ^)(2-3cos^a),

from which it appears that, when cos^ a is equal to

2/3 or, which comes to the same thing, cos2a is equal

to 1/3, that is if the position of the mid-point

of the attracted element lies on the surface of a

cone whose apex is at the attracting element, and

whose apex angle is arc[cos(l/3) ], there is no inter-

action; while for smaller angles there is repulsion,

and for larger ones attraction. This is such an

unlikely result, that the priciple from which it

is derived must come under the gravest suspicion

and with it the supposition that the force in question

must show an analogy with all other forces. It must

be concluded that there is little reason to apply

this analogy to our present field. Since in the

case of all other forces it is originally point ele-

ments, without any definite direction, which interact

with each other, so that the mutual interaction must

'a priori* be regarded as necessarily operating along

the line connecting them, it is hard to see any justi-

fication for transferring this analogy to an entirely

foreign field in which the elements are arranged

in definite directions. The formula itself, which

in no way resembles that for gravitational attraction,

also indicates that there is no real analogy.

"

The force reversal which takes place when a current

element, held parallel to itself, describes a circle around

another element is plotted on fig. 16. The mutual Ampere

force varies from one arbitrary unit of repulsion at a-0

or 180* to two units of attraction at a -90* or 270*. In

each quadrant there exists an angular position for which

the force is zero and changes from attraction to repulsion,

or vice versa. Grassmann did not like this unusual variation
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Pi9- 16 Polar diagram of Che Ampere force between two paral-

lel current elements of constant distance of sepa-

ration

of the elemental force with angular position, but was unable

to provide an argument which proved Ampere's force law to

be %frong.

Lorentz established that Grassmann's formula was an

empirical law for electric charges moving in vacuum, the

current elements then being products of charges and their

velocities. In 1845 Grassmann had no experimental results

to support his force law. Instead he used mathematical

and verbal arguments. His mathematical treatment is diffi-

cult to understand as he was still groping for an easy method

of handling vectors.
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The verbal loqic %fhich Qrai—enn put forward Is interest-

ing and worth suHMrlslng. He had recognized that an infi-

nitely long current behaves like a closed current loop in

its interaction with other currents. That is to say, the

force which an infinitely long current, closed through infi-

nity, will exert on an eleaent of another current is always

perpendicular to the latter eleawnt. as proved by Anpere's

wire-arc experiaent. Orassaann then extended this principle

to an angle-current (Uinkelstroa) . This is awant to be

an infinitely long current fereing the two anas of an angle,

the current ooaiing froai infinity in one atraight conductor

am and returning to infinity in another. Subsequently

he aseuaed the force on any currant eleaant lying in the

plane of an angle-ourrant to be perpendicular to the elaeenc

whatever its position or orientation In that plane. As

1 fi*

Aapsre bad dona. Oraa—nn than aasuswd the wire to conaist

of a very large nuBbar of abort and atraight elaaenta.

Baoh elaaaot could be thought of aa lying right at and to

one aide of the apes of an angla-currant. TTila Idea is fur-

ther aiplained by fig. 17 which daala with a aiaple arrange-
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ment in which the closed circuit ABCDE consists merely of

five elements. Now the element AB is part of the angle-

current aAb and the element EC of the angle-current bCc,

and so on. It will be appreciated that each of the infinite

rays a, b, c, d, and e carry outgoing and incoming currents

of the same magnitude superimposed on each other and

therefore carry no current at all. With this mental picture

established, Grassmann considered the force exerted on an

external current element and in particular the interactions

of this external current element with any of the elements

of a closed circuit such as ABCDE of fig. 17. He was

convinced each of the latter elements would, independently

of the others, generate a perpendicular force on the external

element, because each of the elements of ABCDE was also

part of a separate angle-current. Each angle-current of

ABCDE could lie in a different plane. So the total force

on the external element had to be the vector sum of the

perpendicular force contributions of the individual elements

of ABCDE. This appears to have been the basis on which

Grassmann justified the directions of his elemental

interaction forces. It is remarkable that Lorentz, using

field theory, came up with the same directions. Grassmann *s

law conflicts with Newton's third law according to which

every force on a particle of matter must be accompanied

by an equal and opposite force on another particle of matter.

The Grassmann forces were unequal and not opposite in

direction. Grassmann did not discuss this issue.

Had Grassmann known Neumann's force law (1.50), he might

have recognized that the angle-current argument should also

apply to (1.50). As this latter equation did not agree with

Grassmann' 8 formula, the chances were that at least one

of them was wrong.

Grassmann accepted Ampere's proof of the inverse square

of distance relationship and the proportionality of the

force to the current intensities and element lengths. The
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sine of (1.88) stems from the Biot-Savart law. but Grassmann

arrived at it without having to mention the two Frenchmen.

The agreement between Grassmann 's equation (1.88) and the

expansion of the triple vector product (1.87) may be shown

with fig. 18. In this diagram ^ dn is the resolved component

of the general clement at N in the plane of i dm and r .

Fig. IB To prove the equality of (1.87) and (1.B8)

Furthermore if

k - i„in(dm.dn/rj,^„)

then k.cosc is the newtonian vector of (1.67) and -k.cosSp

the relativistic vector of the same equation. .Applying

the rule of sines to the force triangle of fig. 18 gives

&F„/8in(lB0«-?) • -k.cosan''**"t^n-90')

Therefore

AF^ - k.slne

which proves the magnitude equality of (1.67) and (1.86).
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Grassmann's new electrodynamics had little impact on

his contemporaries. It would now be completely forgotten

but for the fact that it fitted in well with the 20th century

field, relativity, and electron theories. Although it was

based on many of Ampere's ideas and experiments, Grassmann's

law did not contribute to the Ampere-Neumann electrodynamics.

Historically, it was the beginning of a relativistic electro-

dynamics.

WEBER'S FORCE LAW AND ELECTRODYNAMIC POTENTIAL

Finding mathematical laws capable of quantifying Fara-

day's discovery, in 1831, of electromagnetic induction proved

to take much longer than Ampere's deduction of a force

law. No less than fourteen years elapsed before Neumann

in Koenigsberg revealed his law of induction in 1845. Other

physicists were studying this problem at the same time.

Among them were Fechner [12] and Weber [13] in Leipzig.

Neumann had derived his theory of electromagnetic induction

without hypothesis as to the nature of the electric fluid

or fluids. He did, however, have to invent a new force, which

he called the electromotive force, to distinguish it from

the ponderomotive force which moved the metallic conductor.

The Leipzig school employed the same two kinds of forces

but let the electromotive force act on charged particles

that possessed mass. Electrolysis had clearly revealed the

existence of charged particles in an electric current, yet

Fechner and Weber did not know of the rigid connection of

positive ions to the metal lattice. That not all electrodyna-

mic forces in a metal are ponderomotive forces must certainly

have something to do with the bonds that exist between posi-

tive and negative charges, and the bonds betv/een the charges

and the solid body. By the end of the twentieth century,

this whole subject has still not been satisfactorily re-

solved.
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In its mathematical consequences, Weber's work added

little to that of Coulomb, Ampere, and Neumann. It was based

on the same simultaneous action-at-a-distance principle

and involved relative velocities that were invariant under

gal i lean transformations. However, Weber was the first to

take notice of the atomicity of electricity and formulated

a model of the metallic current element in terms of charged

particles. Because of the mobility Weber assigned to positive

ions in the solid metal conductor, his current element model

proved unacceptable. The task of finding a microscopic model

of the metallic current element which can account for the

latest experimental findings has still to be accomplished,

at the time of writing this book. Weber's theory will be

reviewed in order to illustrate pitfalls which must be avoi-

ded on the way to a satisfactory, microscopic model of the

metallic current element.

At the instigation of Fechner, Weber searched for a

force expression which was mathematically equivalent to

Ampere's law but defined the mechanical force between two

current elements in terns of the static and dynamic, simul-

taneous interactions of positively and negatively charged

mass particles streaming in opposite directions, past each

other, through and along current elements. As this law had

to include the interaction of charges at rest relative to

each other, it was an attempt to unify electrostatics and

electrodynamics while at the same time acknowledging the

atomicity of electricity. As a result of this remarkable

undertaking Weber proposed the following laws for the force

Lfe,e* between two electrical charges e and e*, and the

mutual potential AP^ associated with this force.

AP^ ^. - (e.e'/r«)[l-(l/2cM(dr/dt)**(r/c«)(d*r/dt«)l (1.90)

AP^^, - (e.e'/r)(l-(l/2c«)(dr/dt)«] (1.91)

where r is the distance between the charges, t the time.
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and c a dimensional constant. So far the Ampere-Neumann

electrodynamics has been formulated in fundamental electro-

magnetic units (e.m.u.). In contrast to this the Weber equa-

tions are given in fundamental electrostatic units (e.s.u.)

because they contain Coulomb's law. According to the e.s.u.

system the product of two electrostatic units of charge

divided by the distance (in centimeter) squared gives the

force in dyn. Therefore the factor outside the main bracket

of (1.90) has the dimension of a force. The terms inside

the bracket have to be dimensionless numbers. This means

c must have the dimension of a velocity. Weber went on to

show that if (1.90) was to be in agreement with Ampere's

force law (1.24) when each current element consists of a

single electric charge travelling with constant velocity

with respect to the metallic conductor element containing

it, and furthermore if this law was also to agree with the

results of Ampere's experimental measurements, the constant

c had to have the value of 3x10^° cm/s. This constant later

became known as the velocity of light and it seems to emerge

always when the laws of electrostatics are combined with

those of electrodynamics.

Weber attributed no particular importance to c. Today

it appears truly astonishing that the velocity of light

should have revealed itself in a simultaneous action-at-a-

distance theory such as Weber's. Although the charges to

which (1.90) relates move relative to each other and r is

a function of time, the force of repulsion or attraction

between the charges changes simultaneously with r. The formu-

la does not allow for an energy propagation delay which

could be linked with the velocity of light.

Weber [13] proved in detail how (1.90) can be transformed

to (1.24). His proof involves a relatively long mathematical

process and teaches little. Of course Weber did not guess

the form of (1.90) and subsequently prove it to be compatible

with (1.24). How he derived his formula from Ampere's work

is very instructive and worth repeating. It has to be re-



58

, ^.3t Weber published his force law in 1846. the year

n the two Neumann memoirs (8, 9], and he was obviously

"^rrware of Neumann's researches on inductions to which

hi referred extensively in later years. Weber begun his

analysis as follows:

"To lay down a guideline for this study, which is

based on experience, we consider three specific facts

resting partly on direct observation and partly on

the indirect measurements underlying Ampere's funda-

mental law.

(1) The first fact is that two current elements

lying on the same straight line either repel or at-

tract each other, depending on whether their currents

flow in the same or opposite directions.

(2) The second fact is that two parallel current

elements perpendicular to the line Joining them either

attract or repel each other, depending on whether

their currents flow in the same or opposite direc-

tions.

(3) The third fact is that a current element, which

lies on a straight lino with a wire element, induces

similarly directed or opposed current, depending
on whether its own current intensity decreases or

increases.

These three facts are not direct results of experi-
ments, because the action of an element on another
cannot be observed, but they accurately correspond
to observed phenomena to the extent that they almost
have the same validity. The first two facts are al-
ready incorporated in Ampere's basic fonnula of elec-
trodynamics and the third has been added by Faraday's
discovery (of induction)."
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Figure 19 depicts Weber's model of two interacting cur-

rent elements. Each element need only contain one positive

and one negative charge. The two charges in each element

move toward each other, along the line of the element, with

velocity v relative to the metal. They are allowed to pass

each other without appreciable deviation from straight line

motion because, as Weber explained, we are not dealing with

the actual happenings in the conductor but only with an

action-at-a-distance theory in which the charges are treated

as if they could pass each other on a line. The current

intensity of the element is taken to be e.v, where e is

the positive one of the two charges.

Fig. 19 Weber's model of twy current elements

Four Coulomb-type interactions have to be considered,

two of which are repulsions of like charges and the remaining



60

two are attractions of unlike charges. All four sets of

forces act along r, the line connecting the center points

n and N of the two elements. All that was known about these

forces at Weber's time was their strengths as given by Cou-

lomb's law (1.3) for the case where they are at rest with

respect to each other. Weber deemed it probable that relative

motion between the charges would modify the actions, and

Coulomb's law would give the limiting value of the forces

when the relative velocities tended to zero. He considered

it to be his task to determine the departure from Coulomb's

law as a function of the relative motion between the charges.

Of the three facts on which Weber claimed he had built

his theory, (1) and (2) referred to ponderomotive forces

on the conductor netal, but (3) involved an electromotive

force on charge. He convinced himself that the total force

experienced by the metal of the current element was the

vector sum of all the electric forces exerted on the charges

within it by charges located elsewhere. If charges cannot

penetrate the surface of a conductor, there is some reason

to believe that a transverse force on a charge will be di-

rectly transmitted to the metal. However this iiechanism

of force transmission becomes quite dubious when electromo-

tive forces act along current elements to generate Faraday's

induced currents. With regard to these latter forces Weber

seemed to argue that, since they are only of a transient

nature and their magnitude is related to the ratio of the

ass of the moving charges to the much greater mass of the

stationary metal, they may be ignored in conputations, al-

though their mechanical effect does exist.

The lack of a credible mechanism of force transmission

from the moving charges to the body of the metal is the

weakest point of Weber's electrodynamics. This is particu-

larly true for the longitudinal Ampere forces which should

generate tension in wire conductors.

Prom Coulomb's law alone, the force between the elements
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at M and N of fig. 19 should be zero because the static at-

tractions and repulsions cancel each other, the positions

of the charges being assumed to be the points M and N. How-

ever Weber's facts (1) and (2) required the existence of

finite forces, and he argued these forces must be due to

relative velocities and be quantitatively related to these

velocities.

f f

repu6fon otfrottlon attraction

Cdi Cb) fc)

Fig. 20 Current elements on the same straight line

Weber then analyzed the element and charge arrangements

illustrated in fig. 20 which correspond to his fact (1).

When the two col linear current elements point in the same

direction, as in (a), they repel each other. From this fact

he deduced a rule which will be coupled with his name. We-

ber's Rule is:

"Whatever their sign, charges moving in the same

direction along a straight line produce more mechani-

cal force between the associated conductor elements

than charges moving in opposite directions along

the line."
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It will be seen that this rule also applies to the element

pairs of fig. 20(b) and (c) which point away from, or toward,

each other.

The relative velocity of two charges separated by the

distance r is dr/dt. This differential coefficient is posi-

tive when the charges move appart and negative when they

come together. In order to make the inter-particle force,

which was caused by relative motion, the same for aproaching

and receding motion, Weber assumed it to be proportional

to the square of the velocity and thereby freed it of the

sign of dr/dt.

Let e and e' be the positive particles in the two current

elements and u and u' the associated velocities with respect

to some rest frame. Furthermore, let the direction of current

flow in an element be defined by the motion of the positive

charge with respect to the conductor metal. The negative

particles in the two elements will be denoted by -e and

-e' and their velocities with respect to the rest-frame

by -u and -u*. In the element arrangement of fig. 20(a) we

then encounter the four relative velocities

for e and e': dr/dt - u - u';

for -e and -e': dr/dt - -u u';

for *e and -e": dr/dt - u u';

for -e and e': dr/dt - -u - u'.

Hence for equal polarity particles

(dr/dt)* - (u - u')* (1.92)

and for unequal polarity particles

(dr/dt)» - (u u')« (1.93)

According to Weber's Rule of the stronger velocity-dependent

interaction of charges moving in the sane direction, (1.92)

and (1.93) can only be interpreted as reductions of the
electrostatic force. From this follows the Intermediate
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result for each of the four interactions between two current

elements of

(e.e'/r2)[l - a*(dr/dt)M

where a^ is a dimensional constant and e and e' may be posi-

tive or negative. The four sets of forces are

between ^e and e': (e.
e

' /r^ ) [ l-a^ (u-u'

]

between -e and -e': (e.e* /r* ) [ 1-a^ (u-u* )2

1

between e and -e*: - (e. e* /r' ) [ l-a^ (u*u' )
^

]

between -e and e': -(e. e* /r* ) [ l-a^ (u*u '

)
*

]

Therefore the total forces of repulsion and attraction be-

tween the two current elements are given by

repulsion: 2(e. e' /r* ) [ 1-a* (u-u* )*

]

attraction: -2(e.e'/r* )[l-a« (u*u' )«

]

These forces differ in magnitude and sign and their resultant

is

AFg g, - 8(e.e'/r*)a*u.u' (1.94)

In the arrangement of fig. 20(a) e.u and e'.u' are

the element currents im and In and therefore this last ex-

pression agrees with Ampere's force law in so far as the

mutual mechanical force between the elements is proportional

to the two current intensities, inversely proportional to

the square of the distance of separation, and is a repulsion

as indicated by the positive sign. For the other two arrange-

ments of fig. 20, one of the velocities is reversed which

results In a negative interaction force signifying attrac-

tion.

Weber found expression (1.94) inadequate to explain
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his fact (2), as the elements then lie perpendicular to

r and dr/dt-O for all charge combinations. To account for

the strong interaction between parallel current elements

arranged perpendicular to the line joining them, it was

necessary to bring in the relative acceleration d^r/dt*.

With the acceleration term the inter-particle force took

the form

AFg^e' " (e.e'/r»)[l-a*(dr/dt)»»b(d*r/dtM) (1.95)

In order to comply with Weber's fact (2) the dimensional

constant b had to be positive.

To make the acceleration term compatible with Ampere's

force law Weber distinguished the distance between two inter-

acting charges, that is r, from the distance R between the

interacting current elements. With respect to fact (2) R

is constant while r varies with time. In the case of two

positive charges e and e', travelling with velocities u

and u' with respect to a comon rest frame, the relationship

between r and R is

r« - R* (u-u')«t« (1.96)

Neither u nor u' are varying with time. Therefore

dr/dt - (u-u')«t/r (1.97)

d'r/dt* - [(u-u')«/r][l-(t/r)] (1.98)

Hence in the particular circumstances of Weber's fact (2)/

which implies dr/dt-O-t, the following interactions are

obtained from (1.95), (1.97), and (1.98)

between ^e and e': (e.e'/r*)(l*(b/r)(u-u' )*
)

between -e and -e': (e.e'/r*)(l*(b/r)(u-u' )« )

between e and -e': -(e.e* /r* )(l*(b/r) (u*u' )* )
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between -e and e': - (e.
e

' /r^ ) [ 1 (b/r) (u*u
'

)
*

)

The force between the two current elements is the sum of

these four components and it comes to

AFg^g, - -8(e.e'/r2)(b/r)u.u' (1.99)

The negative sign of (1.99) indicates attraction when both

currents e.u and e*.u' flow in the same direction, which

agrees with Weber's fact (2). When one of the currents is

reversed the attraction changes to repulsion. The strength

of the force is seen to be proportional to the product of

the currents, as required by Ampere's law. However, in this

particular case, the force is not inversely proportional

to the square of the distance of separation but to the cube

of that distance.

Weber's facts (1) and (2) also define the relationship

between the dimensional constants a and b of (1.95). The

forces for these particular situations are given by (1.94)

and (1.99). In the latter situation Ampere's law (1.24)

gives a force that is twice as large as in the former situa-

tion. Hence

b/r - 2a* (1.100)

With (1.100) Weber's formula (1.95) may be vnritten

^« «• - (e.e'/r*)[l-a*(dr/dt)**2a«r(d«r/dt*)l (1.101)

To relate (1.101) to Weber's law (1.90) and Ampere's law

(1.24), while in the process clarifying the meaning of the

dimensional constant a, we rely on Maxwell's analysis [14]

which is easier to understand than Weber's.

The first step is to replace the angle function in Am-

pere's law by the differential coefficients of Fm^n-r with
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respect to the current element lengths dm and dn. It follows

from (1. 16) and (1.41) that

f(a, B. £) - 2cosE - 3cosa COS: • ( rr/ Sm) ( 3r/ Bn ) - 2r(3'r/Sm3n)

Ampere's law then becomes

^^m,n ' -injin^**'"-^"^^'^^^^^^^'"^^ '
2r( 5' r / Jm Sn) ]

(1.102)

Now

dr/dt • ( 3r/ 3m)(din/dt)«( 3r/ 3n)(dn/dt) - u( 3 r/ 3 m) u' ( 3 r/ 3n)

(1.103)

(dr/dt)' - u'(3r/3m)«»2u.u'(:-r/3m)(3r/3n)«u »(3r/3n)«

(1. 104)

d«r/dt» • u'(3'r/3mM»2u.u'(o'r/3m3n)»u'»(5'r/3n») (1.105)

If the object is to express : in terms of relative velo-

cities and accelerations between charges in two elements,

it will be seen from (1.104) and (1.105) that only terms

involving the product u.u' can be responsible for the diffe-

rential coefficients in (1.102). Therefore terms involving

u' and u'» must vanish for physical reasons. From this Max-

well drew the conclusion that in Weber's theory the electric

current cannot be taken as being charge transfer in only

one direction, but must be the combination of two opposite

streaas in each current element, so that the combined effect

of the terms involving u' and u'' may be zero.

Suppose the element dm contains only two electric par-

ticles carrying charges e. , and e. ^ travelling with veloci-
m# 1 nif ^

ties Ugj
I

and u„^ 2 ^^^^ respect to the wires. Similarly,

let element dn contain two charges e^^^ and ^^^2 travelling

with velocities u^ ^ and u^ 2 »it,h respect to the metal
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of dn. Then there arise four sets of interactions between

Vl ®n,l^ ein,ien.l(Vr%,l^'"^m,l^n,l(";,r2^m,l^n.r"n,l

«m,l and 1%, 2^%, T^n, "V l^n, 2^"^, l-2u„, iV 2*"n, 2

V2 «n,r V2^n,l^"m,2-%,l>'-V2«n.l(^m,2-2^n.,2%.r^n.l

m, 2 n, 2 in, 2 n, 2 in,2 n,2 m, 2 n,2 111,2 in, 2 n,2- n,2

Of the above twelve terms, each consists of the product

of two charges and the square of a velocity or the product

of two velocities. Collecting the terms in u' , u^, and u u^,
m n m n

it follows that

I'm^n'^ "S,.l'VlVl**ml%.2>*"m,2<V2Vl*V2%.2'

• ("S,.lVlX2V2>(Vl*V2' "1°"

Similarly

I'm^n-n ' <"S. l«n, l*"n.2V 2>
^V 1*V 2^ f^ ^"'

Iem«n"«"n ' iV X*"»,2ein, 2>«V l*n, l*"n.2«n.25

(1.106) and (1-.107) contain terms with squares of velocity

which must 'be zero if Weber's force law is to agree with

Ampere's. Therefore in the case of (1.106) we must have

either (uj,, i»uj, j'™, z^-O-- <-%.l*%.2^'°

According to Fechner's original hypothesis, on which Weber

based his theory, the flow of positive charge in the positive

direction of the wire is exactly equal to the flow of nega-

tive charge in the negative direction. This means both condi-

tions of (1.109) are fulfilled by Fechner's hypothesis.

However it is possible to deliberately charge a conductor

such that e„ e^ o^O, and if the force law is to hold for
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conductors which are not electrically neutral, we must have

naxwell then continues to say:

"Whatever hypothesis we adopt, there can be no doubt

that the total transfer of electricity, reckoned

algebraically, along the first circuit (m) is repre-

sented by

ViVi ' V2V2 ^-
V"

where e is the number of units of statical electricity

which are transmitted in the unit electric current

in the unit of time so that we may write (1.108)"

The current strength having thus been defined, (1.102) can

be expressed by

r.
• -(l/CrMTe e u u (Or/3m)Or/3n)-2r(3*r/am3n)]

m,n ^ m n n
(1.111)

But from (1.104), and since the terms containing the square

of velocities must be zero

u^UjjOr/am)(ar/dn) - (l/2)(dr/dt)«
(1.112)

and from (1.105)

"J'nCa'r/aman) - (l/2)(d«r/dt«) (1.113)
n n

Substituting (1.112) and (1.113) into (1.111) gives

^'m,n
• I(«BV^'^f^''/*^*^^^'^^**^*>-d/2cM(dr/dt)«) (l ll"*^
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When considering the force between any two charges e

and e'. rather than the force between two current elements

i_ dm and i dn. the electrostatic interaction has to bem n
added to (1.114), so that

AF^ ^, . (e.e'/rMt Wl/2c»)(dr/dt)»«(r/c')(d'r/dt')l

which is Weber's force law (1.90). In this formula the force

is given in dyn when e and e' are inserted in e.s.u. of

charge, r in centimeters and t in seconds. Therefore c.

which was introduced as the number of e.s.u. of charge per

second in one absolute ampere, now appears to have the dimen-

sion of a velocity. This transformation of a number to a

velocity had farreaching consequences in the further evolu-

tion of physics and now underpins the whole of radiation

science. In his determination of measure ratios. Ueber found

the number of e.s.u. of charge in 1 ab.amp. to be

c - 3«10'» (1.115)

When given the dimension of cm/s this has become the velocity

of light.

Weber collaborated with Kohlrausch in the first determi-

nation of the charge content of an electric current. At

the time they published their results in 1856 (15] they

did not know they were dealing with a number related to

the velocity of light. Laboring under the misconception

of the electric fluidum of two polarities moving simulta-

neously in two opposite directions, they quoted the number

of 'positive' charges passing through a conductor section

per second, when one absolute ampere of current is flowing,

as 155. 370>i 10* . This determination was based on the millime-

ter being the unit of length. Maxwell later multiplied the

Weber-Kohlrausch number by two to account for the transfer

of positive and an equal number of negative charges, and

then divided the product by ten to obtain a velocity in

c.g.s. units of 3.1074-10'' cm/s. Maxwell's own measurements
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gave 2.88 '10*' cm/s. These figures he then compared with

measurements of the velocity of light carried out a few

years earlier by Fizeau and Foucault. and ranging from 2.98

to 3.14 "10" . The good agreement led Maxwell to believe

that electromagnetic disturbances are propagated with the

speed of light, and that light itself was an electromagnetic

phenomenon

.

The first to pronounce this fact appears to have been

Kirchhoff who, almost simultaneously with Weber, studied

the speed with which electromagnetic signals travelled along

telegraph wires. Both Kirchhoff and Ueber came to the conclu-

sion that this speed varied from one circuit to another

but has c as its upper limit. Kirchhoff felt this limiting

speed was actually the velocity of light.

Writing Weber's electrodynamic potential of two charged

particles (1.91) as

^%,e' " (« e'/r)-(e.e'/2rc*)(dr/dt)»

it is seen to be the difference between the electrostatic

potential and a term containing the relative velocity between

the charges. The velocity term cancels the first ten when

• (dr/dt) •2c (1. 116)

The term involving the square of the relative velocity is

akin to a quantity of kinetic energy given by

(l/2)m^v«

where m^ is some non-material 'electromagnetic mass' and

v^ the relative velocity between the charges. Weber's poten-

tial defines the electromagnetic mass as

• (e.e'/rcM (1.117)

which leads to the following mass-energy relationship
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m^c^ - (e.e'/r) (1. 118)

Because of the inclusion of kinetic energy in Weber's

potential, the interparticle force is not simply the negative

gradient of the potential, but the Lagrange- force defined

by the differential operator [ - (3 / 3r) (d/dt) ( 3/ 3 v^. ) 1 , that

is

^^e e'
' t-0/3r)*(d/dt)0/3Vj.)] {(e.e'/r)[l-(l/2cMvy }

- (e.e'/r* )[l-(l/2cM(dr/dt)2*(r/c2)(d2r/dt*) ]

(1.119)

which corresponds to Weber's force law (1.90). It should

be noted that the electromagnetic rest-mass (v^-0) in Weber's

theory is zero.

As Weber's theory leads back to Ampere's force law,

it must also be compatible with Neumann's law of induction.

This was proved in different ways by both Weber and Neumann.

Electrical engineers have found little use for Weber's formu-

las because they do not refer directly to current elements

and are therefore difficult to apply to metallic circuits.

Prom the theoretical point of view, Weber's charged particle

dynamics injected something analogous to kinetic energy

into electromagnetlsm. The idea of the magnetic effect of

the electric current being a kinetic phenomenon was fully

elaborated by Maxwell and is an indispensable part of special

relativity and our present understanding of the motion of

electrons. It was with the charge kinetics that Weber clearly

departed from the Ampere-Neumann electrodynamics. The elec-

trodynamic potential of Neumann was a pure potential in

the sense that all the energy to which it referred was depen-

dent only on the position of current elements without refe-

rence to velocities. It did not require the existence of

a non-material electromagnetic mass and the energy always

belonged to matter.
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RETARDED POTENTIALS AND THE ELECTROMAGNETIC FIELD

On the whole philosophers have preferred to explain

the motion of matter by the pushing and pulling of connected

neighboring bodies rather than attraction and repulsion

exerted by distant objects. For a time the enormous success

of Newton's theory of gravitation suppressed this inbred

preference. But 150 years later, in the middle of the nine-

teenth century, men like Faraday, W. Thompson (Lord Kelvin),

Maxwell, Rieraann, Lorenz turned away from the Ampere-Neumann

electrodynamics which had been cast in the newtonian mold.

These scientists showed renewed interest in contact-action

theories.

The new electrodynamics arose from two lines of thought.

Faraday and Maxwell believed in the existence of an aether

that could support mechanical stresses and strains which

were set up by electric and magnetic molecules of matter

embedded in the aether. According to the English school

the aether was capable of imparting the stresses to other

material objects by being in contact with them. Disturbances

of the aether were assumed to be propagated at the velocity

of light without requiring the transport of aether over

long distances.

The other approach originated with L. Lorenz [17] i.i

Denmark and Riemann [18] in Goettingen. It found a strong

supporter in Carl Neumann [19], the son of Franz Neumann,

and resulted in the invention of retarded potentials which

were thought of as actions travelling at the constant veloci-

ty of light through empty space fron one particle to another.

As the potential of a charged or a current-carrying body

receded into space it was assuaed, sooner or later, to reach

every other particle in the universe. In other words, the

potential spread like a sperical wave in a fluid medium,

but since It was not considered to be a disturbance of some

aether, it had to be of the nature of a spherical projectile

which, let us say, 'painted' the space through which it
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had passecj.with potential of decreasing intensity. The dyna-

mics of the aether and the ballistic potential concept

strained the imagination of all who wished to create a mecha-

nistic explanation of the world. Quite surprisingly, the

two apparently unrelated mechanical models led to the same

system of equations, that is Maxwell's equations, which

have become the backbone of field theory.

In a period of approximately twenty years, from 1850

to 1870, the models of the electromagnetic aether and travel-

ling potentials evolved side by side, both having been more

or less completed when Maxwell published his Treatise [14]

in 1873. Lorenz postulated the retarded scalar potential

p, at a point P. of a charge distribution p throughout

the volume V to be

*p • /((0]/r)dV (c.s.u.) (1.120)

Apart from the retardation, this was derived directly from

Coulomb's law. It represents electrostatic potential energy

per unit test charge at P. The distance between P and the

volume element dV is r. The square brackets in (1.120) are

meant to Indicate that the position of each charge must

be that which it occupied at some earlier time when Its

potential was emitted with velocity c to arrive at P at

the instant of evaluation of . If t is the time of evalua-

tion, the position of each charge at time t-(r/c) has to

be ascertained before executing the integration of (1.120).

Lorenz applied the same hypothesis to the magnetic vector

potential A at point P.

Ap • f'((Jl/r)dV (e.m.u.) (1.121)
V

"

J is the current density vector inside the volume element

dV at a distance r from P. The magnetic vector potential

represents electrodynamic potential energy per unit current
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element strength at P. The square brackets in (1.121) again

indicate retardation.

In order to avoid confusion between the retarded poten-

tials of field theory and the mutual potential of charges

and current-elements in the Ampere- Neumann electrodynamics,

some important differences between these two concepts have

to be noted. First of all. the mutual potentials have the

dimension of energy and are actual measures of potential

energy. The mutual potentials always involve at least two

material entities or particles. The retarded potentials

have the dimension of energy divided by charge or current-

clement strength. One can speak legitimately of the retarded

potential of a single charge or current -element. The mutual

potential of an isolated particle has no meaning. Equations

(1.120) and (1.121) have been expressed in fundamental elec-

trostatic and electromagnetic units to emphasize their physi-

cal contents.

Electric charges can be created or neutralized instanta-

neously in pairs by collision processes. The mutual poten-

tials are thought to arise or vanish simultaneously with

charge splitting or neutralization. Current element pairs

are also subject to instantaneous creation and extinction

together with their mutual potentials. There is no need

for the mutual potentials to exist outside the charges or

current-bearing matter. This is not so with retarded poten-

tials which in their travels through ^pace become detached

from the matter that created them. The question arises:

how is the retarded potential (or field) of a charge can-

celled when the charge is suddenly neutralized? The only

way in which we can conceive of a process of cancellation

appears to be the emission of another spherical wave projec-

tile from the eclipsing charge which strips the 'potential

paint' off the space through which it passes. To distinguish

this second wave fron the first it must be of opposite pola-

rity. Hence we have to have positive and negative retarded

potentials which travel in the same direction with the same
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velocity c. The mutual potentials of the older electrodyna-

mics also have polarity. This decides whether the potential

energy is the result of repulsion or attraction and is in

no way related to the polarity of retarded potentials. An-

other crucial difference between the two kinds of potential

is the type of relativity to which they are linked.

e 0 0
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Fig. 21
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Retarded potential and relative motion

(a) field charge stationary

(b) test charge stationary

For example, consider two positive charges as indicated

in fig. 21. Let F be the charge which generates the retarded

potential and T the test charge. In the Ampere-Neumann elec-

trodynamics the mutual potential between the two charges,

and hence the force between them, changes simultaneously

with any alteration in the distance of separation r. It

does not matter if F is considered to be the stationary

and T the moving charge, or vice versa. Also, no restriction

need be imposed on the positioning of observers who measure

the mutual force. This is galilean relativity.

The same arguments do not apply to retarded potentials.

Take the case when F is at rest and T moves away from it

at velocity v. T then advances into space which already

contains the painted retarded potential information which

was emitted by F when it first arrived, or was generated.



76

at its rest position. Therefore the interaction distance

between the charges is the actual distance

r - r v.At (1. 122)
0

where r^ is the original distance of separation and A t the

time for which T has been moving away from F. Now let T

be at rest and F move away from it with velocity v. Then

after a time interval At , following the commencement of the

relative motion, the field charge is at but the signal

of its arrival there has not yet reached T. In fact the

latest position of which T has knowledge is F^^ at a distance

of

r - Tq v(At - Atj) (1. 123)

c.Atj - Tq V. Atj^ (1. 124)

Atj - (rg/c) (v/c)At (1.125)

Substituting (1.125) into (1.123) gives the interaction

distance as

r - rQ*v.At-(v/c)rQ*(v«/c)Atj^ (1.126)

This last equation will in general not be equal to (1.122),

although it can approach it very closely when c>>v. As elec-

trical charges in vacuum can and do move with a significant

fraction of the velocity of light, we see that gal i lean

relativity does not hold for retarded potentials. Field

theory using retarded potentials calls for a special relati-

vity. This was provided by Einstein [20] in 1905.

Lorenz and Rienann were guided to retarded potentials

by an analogy with the diffusion of heat and sound through

Material media. Accordingly, the diffusion through empty

space of the scalar and vector potentials was assumed to
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be governed by

- (l/c2)02*/3tM - 0 (1. 127)

(l/c2)02A/3tM - 0 (1. 128)

Both Whittaker [6] and 0' Rah illy [22] have shown how

Maxwell's field equations may be derived directly from the

diffusion equations (1.127) and (1.128). For vacuum the

Maxwell equations may be written

where E and B are the electric and magnetic field vectors,

respectively. Maxwell himself obtained his equations from

the aether model and displacement currents. He went on to

show that the field equations lead to the diffusion equations

and were therefore compatible with the propagation of retar-

ded potentials.

At this stage we might pause and ask the question: where

precisely does field theory deviate from the Anpere-Neumann

electrodynamics? Three fundamental points of departure come

to mind.

1. Coulomb, Ampere, Neumann, and Weber attributed all elec-

tric and magnetic interactions of ponderable matter to forces

residing entirely inside the material. In field theory the

space between material bodies and particles has become a

participating entity, by way of an aether or energy filling,

or through being the bearer of abstract, mathematical projec-

tiles.

7-E - 0 - 7«B (1. 129)

7xE -OB/3t); 7xB - (l/c')(3E/3t) (1.130)

2. In the newtonian model of electromagnetism the forces

between material bodies act simultaneously. Any delay between
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cause and effect must be due to the fact that we observe

only relative inotion--not force--and it takes time for forces

to set matter in motion. In field theory the time delay

between cause and effect is easily explained by the transmis-

sion-lag of potential or energy travelling across space.

Only in one isolated instance, involving electromagnetic

induction in metals, has the time-lag between cause and

effect been revealed with the Ampere-Neumann electrodynamics.

3. We cannot mark a point in space other than by placing

a particle at the point. If this particle is to be a lookout

for passing electromagnetic disturbances, it must itself

have electromagnetic properties, that is it must be charged.

Such a particle inevitably sets up its own field and thereby

Mkes the objective observation of other fields impossible.

Hence tracking waves or energy through space will, at best,

be confusing. The need for a special theory of relativity

is then hardly surprising. The natter-bound Ampere-Neumann

description of electronagnetic phenomena rests solely on

the relative positions and Motions of material elemehts,

and therefore remains in harmony with the natural relativity

of the newtonian mechanics.

At the time of his death, in 1B79. naxwell could scarcely

have foreseen the relativity problem which was to attract

so much attention twenty years later. Nor did he expect

any conflict between his aether field and the laws of Ampere

and Neumann, whom he considered to be mathematicians rather

than physicists. His confidence in the agreement of the

two electrodynamics with regard to experimentally verifiable

facts shines through the following quotation from the Preface

to the first edition of his Treatise (14]:

'For instance. Faraday, in his minds eye. saw lines

of force traversing all space where the mathematicians

saw centers of force attracting at a distance: Faraday

saw a medium where they saw nothing but distance :
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Faraday sought the seat of the phenomena in real
actions going on in the medium, they were satisfied
that they had found it in a power of action at a
distance impressed on the electric fluids.

When I had translated what I considered to be
Faraday's idea into a mathematical form, I found
that in general the results of the two methods coin-
cided, so that the same phenomena were accounted

for, and the same laws of action deduced by both

methods, but that Faraday's methods resembled those

in which we begin with the whole and arrive at the

parts by analysis, while the ordinary mathematical

methods were founded on the principle of beginning

with the parts and building up the whole by synthesis"

It is indeed surprising that two so different philoso-

phies 'could accurately explain the same experimental facts.

Nonetheless, the Ampere-Neumann electrodynamics, in its

narrow scope, would by now have slipped into complete obli-

vion had it not been for one experimental discrepancy between

the two theories. This concerned forces in metals. It arose

from the introduction of the Grassmann-Lorentz force law

and Einstein's special relativity, added to field theory

after Maxwell's death. Grassmann's law was found indispen-

sable for explaining the behavior of electrons in vacuum.

Difficulties arise only when Grassmann's law is applied

to metallic circuits. We have every reason to believe that

this law correctly describes the forces acting on moving

electrons and ions in empty space. Maxwell preferred Ampere's

law over Grassmann's. He considered two more possible expres-

sions for the ponderomotive force between two current ele-

ments and then summarized his findings by saying (14]:

"Of these four different assumptions that of Ampere

is undoubtedly the best, since it is the only one

which makes the forces on the two elements not only

equal and opposite but in the straight line joining

them.

"



80

Today this strikes us as an odd statement to have been made

by the man who provided an alternative to the newtonian

electrodynamics. Maxwell's admiration of Ampere and his

work was unbounded as the following quotation from the Trea-

tise reveals:

"The experimental investigation by which Ampere estab-

lished the laws of the mechanical action between

electric currents is one of the most brilliant achie-

vements in science. The whole, theory and experiment,

seems as if it had leaped, full grown and full armed,

from the brain of the 'Newton of electricity'. It

is perfect in form, and unassailable in accuracy,

and it is summed up in a formula from which all the

phenomena may be deduced, and which must always remain

the cardinal formula of electrodynamics."

MATTER-BOUND VERSUS FREE ENERGY

As much as the newtonian physics is ruled by forces,

so relativistic field theory is dominated by the concept

of free energy. Only in the second half of the ninete<^nth

century did it become fashionable to speak of energy; Newton

and Ampere never used the vor^. One of the first definitions

of energy was: the ability of a body to do work. Thus in

the beginning energy was inseparably associated with matter.

It means energy was not considered to be another fluidum

pervading the body, but rather a state of affairs relating

to material particles. The oiecules of hot air contained

energy by virtue of their fast motion. A brick at the top

of the house was richer in energy than one at the bottom

because of its greater distance from the center of the earth.

It was found that in changing the arrangenent of material

bodies, energy would be transformed from the potential to
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the kinetic and thermodynamic versions, or the other way

around. These transformations did not necessarily involve

the flight of energy from one body to another, and the total

quantity of energy was always conserved.

The Ampere- force on a short section of wire has a trans-

verse and a longitudinal component. If the force acted on

the elctrons, rather than the atoms, the transverse component

would still be translated to a body force by the surface

work function which stops the electrons from leaving the

metal. However the longitudinal force component would simply

accelerate electrons and thereby contribute to current flow

rather than produce mechanical stress. Yet the Ampere law

defines the longitudinal component as a ponderomotive force,

and not an electromotive force. Therefore this force has

to attach itself to the atoms and not just the electrons.

It would seem unnatural if one component of the same force

attached itself to electrons and the other to atoms. Logic

appears to dictate that both must act on the atom. Since

the atoms of the metal lattice are essentially stationary,

the energy associated with Ampere forces cannot be kinetic

energy. It has to be potential energy which, most likely,

resides in the atoms.

Field theory paints a very different picture. Not only

are we accustomed to the idea of energy leaving the metal

and residing In the magnetic field, but this energy depends

on the velocity of electrons. In Maxwell's view this was

clearly kinetic energy. According to special relativity

the kinetic energy of the moving electrons in the metal

exists largely as free energy in the magnetic field. We

can associate with it an electromagnetic mass which is also

located in the field and gives rise to field-energy momentum.

These dynamic concepts related to magnetic energy have no

counterpart in the Ampere-Neumann electrodynamics.

In the old electrodynamics energy and forces were always

related to pairs of particles or bodies. In a newtonian
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world, the discussion of the energy of an isolated particle

or body is meaningless. How can this pair-ruJe be made to

comply with Newton's first law of motion, which involves

kinetic energy and states that: "Every body continues in

Its state of rest, or uniform motion in a straight line,

unless it is compelled to change that state by forces im-

pressed upon it". Is the lone cannonball sailing through

space far away from all other heavenly bodies not an isolated

object possessing kinetic energy of «jmv' ? To clarify this

question we have to explain what is meant by the velocity

V. This has to be relative to something: the earth, the

sun, the fixed stars. It immediately suggests that we arc

not concerned with a totally isolated object. How could

the definition of a relative velocity influence the meaning

of inertia of Newton's first law?

ilach [23] maintained that it is not possible to remove

a body from the gravitational influence of the remainder

of the universe. He went on to reason that the gravitational

pulls of the widely distributed, enormous amount of matter

in the universe must hold the key to the inertial behaviour

of objects in the solar system. This is Mach's principle.

It unshackles newtonian dynamics from absolute space and

lets us believe that kinetic energy is also associated with

pairs of particles and therefore is. in fact, mutual energy.

It is the inertia of matter which introduces the time-lags

between causal forces and observed motions into the mechanics

of Newton. If the interaction of terrestrial charges with

charges in the remainder of the universe were able to produce

"electrodynamic inertia", the explanation of time-lags in

radiation theory by a simultaneous action-at-a-distance

theory, like the Ampere-Neumann electrodynamics, no longer

seems out of the question. Of the scientists who have seri-

ously studied Hach's principle we might mention Einstein

125), Sciama 1261, Moon and Spencer 1 27 J, Durniston Brown

{28), and more recently Assis 199).

Here are Lorentz's views on the subject of free energy
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as he expressed them in connection with his theory of elec-

trons [29]:

"For this reason, the flow of energy can, in my opin-

ion, never have quite the same meaning as a flow

of material particles, which by our Imagination at

least, we can distinguish from each other and follow

in their motion. It might even be questioned whether,

in electromagnetic phenomena, the transfer of energy

really takes place in the way indicated by Poynting's

law, whether, for example, the heat developed in

the wire of an incadescent lamp is really due to

the energy which it receives from the surrounding

medium, as the theorem teaches us, and not to a flow

of energy along the wire itself. In fact, all depends

on the hypothesis which we make concerning the inter-

nal forces in the system, and it may very well be,

that a change in these hypotheses would materially

alter our ideas about the path along which the energy

is carried from one part of the system to another.

It must be observed however that there is no longer

room for any doubt, so soon as we admit that the

phenomena going on in some part of the ether are

entirely determined by the electric and magnetic

force existing in that part. No one will deny that

there is a flow of energy in a beam of light: there-

fore, if all depends on the electric and magnetic

force, there must also be one near the surface of

the wire carrying a current, because here, as well

as in the beam of light, the two forces exist at

the same time and are perpendicular to each other.

"

The word energy with its present connotation is said

to have been introduced by Lord Kelvin. However, it was

a lecture given by Helmholtz in 1847 [30] on the conservation

of force, but actually dealing with the conservation of

energy, which aroused the greatest interest. From then onward
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physical theories were required to be consistent with the

energy conservation principle. More than 200 years before

then, Galileo already had a fair idea of energy conservation,

or the impossibility of perpetual motion. At the end of

the nineteenth century this same principle looked very much

more important because of a measure of unity which it brought

to the three distinct disciplines of mechanics, thermodyna-

mics, and electromagnet ism. Ampere was dead when Helmholtz

spoke and Neumann had just published his second paper on

induction. Neumann lived through the energy revolution,

but he did not return to write about electromagnetism.

Being closer to the action-at-a-distance theories than

we are now, Lorentz was still a trifle uncertain about the

existence of free energy. He correctly pointed out, however,

that once we accept electric and magnetic forces in the

field we have no choice but believe also in free energy.

This energy replaced the aether and became yet another con-

tinuous fluidum. What a surprise, therefore, when it was

revealed that this fluidum comes in parcels, which are now

known as quanta or photons. Had scientists adhered to the

natter-bound energy of the Ampere-Neumann electrodynamics,

they would have expected energy to be quantized in the same

way matter is quantized. Quantum mechanics is a natural

partner of simultaneous matter interaction theories.

THE BLBCTRON

Wilheln Weber [13] considered the electric current in

a wire to be the progression of small material particles

carrying either positive or negative charge. Particles of

opposite charge were assumed to move in opposite directions.

The current strength was defined as the total positive charge

passing through a given wire cross-section in unit time.

Weber's analysis did not refer to the inertia 1 mass of the



85

charge carriers. His mutual potential energy of a pair of

charges (1.91) contained a term which was proportional to

the square of the relative velocity. This could have been

interpreted as representing kinetic rather than potential

energy. If the kinetic interpretation was chosen, the charge

had to be associated with an electromagnetic mass given

by (1.117). When this electromagnetic mass is multiplied

by the square of the velocity of light it becomes equal

to the electrostatic potential energy of the two charges,

as shown by (1.118). This indicates that Weber's theory,

although in complete quantitative agreement with the Ampere-

Neumann electrodynamics, contained the seeds of modern field

theory provided one believed that the magnetic force and

energy were the result of the motion of charges and not

the instantaneous distribution of charges.

It was Maxwell who convinced scientists of the kinetic

nature of the magnetic field. The alternative view was drop-

ped without having received serious consideration. This

alternative explanation would have to start by recognizing

that in a current- free metallic conductor the positive and

negative charges neutralize each other by combination or

chaotic motion. When a current is impressed on the conductor,

some order is brought to the charge distribution without

upsetting Che numerical balance between positive and negative

charges. The Coulomb effect of this order must then be re-

sponsible for the mechanical and electromotive forces on

current elements. In such a model Neumann's electrodynamic

potential (1.35) would depend on the instantaneous order

of charge distribution, which represents potential energy

in the true sense of the word.

The enormous success of Maxwell's electromagnetism in

the hands of Hertz [33], who used it in his experiments

with electromagnetic wave propagation, swept any thought

of nonkinetic magnetism away. Even the atomicity of electri-

city had to take a hackstand for some years while the con-
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tinuun reigned supremely. When proposing his new electron

theory, Lorentz apologized for having to return to the old

concept of discrete charges. At the same time he made the

electron compatible with the field, as far as this could

be done. It turned out to be a rather strenuous effort and

had to overcome a number of unexpected difficulties. Their

resolution anticipated the special theory of relativity.

It was mainly research on cathode rays, Q-radiation

from radium, and the deflection of streams of electric char-

ges in vacuum by electric and magnetic fields which placed

the electron on a firm experimental basis. Its rest-mass

and charge established it as the smallest charged particle

and therefore the building block of electrical science.

Handling the electron inside and out of matter became a

great scientific and technological challenge in the present

century and led to stunning achievements.

Can Weber's theory deal with the electron moving through

the ionic lattice of a metal? The definition of current

strength, as being the motion of positive charge with respect

to the conductor, would have to be changed. This presents

no difficulty. A suitable new definition would be: the nega-

tive product of the negative charge multiplied by its rela-

tive velocity with respect to the host metal. Weber's idea

of both types of charge moving in opposite directions with

only one counting toward the cxirrent was in any case strange.

This oddity disappears as we freeze the positive ions to

the lattice.

Consider two elements dm and dn of a straight conductor,

as shown in fig. 22(a). The electron velocity relative to

the lattice is v in both elements. The magnitudes of the

four charges are all equal to the electronic charge e. To

comply with Weber's fact (1) (see page 58), the four relevant

pair interactions of page 63, with one charge in dm and

the other in dn, then become
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Fig. 22 The electron in Weber's current element model

between e and e:
between -e and -e:

between e and -e:

between -e and e:
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Sununing these interactions gives the col linear repulsion

force

AF
in,n

2a*v2e*/r» (1.131)

which corresponds to (1.94) and, with an appropriate dimen-

sional constant a, it agrees with the Ampere force between

two col linear elements. In the Weber model, the current

element is given by the product of charge and its velocity.

The reduction of the numerical factor in (1.94) from 8 to

2 is the result of eliminating relative motion between the

positive ions and the lattice.

Using Weber's fact (2) on page 58, we can in the same

way derive the force between two prallel elements arranged

side by side, as shown in fig. 22(b). This force will corres-
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pond to (1.99) and with (1.100) comes to

AF^^^ - -4a'v»e'/r» (1. 132)

Since e.v represents a current element, and with the dimen-

sional constant 'a' defined to make (1.131) agree with Am-

pere s law. equation (1.132) is Identically the same as

the Ampere force betvreen two parallel elements which lie

perpendicular to the line Joining them. Hence conduction

electrons streaming through the metal lattice with some

average velocity, in the eyes of Weber's mathematics, gene-

rate longitudinal and transverse mechanical forces on the

substance of current elements which agree with Ampere's

force law and therefore also with the induction of electromo-

tive forces according to Neumann's laws. This is quite remar-

kable when one considers that the Ampere-Neumann electrodyna-

mics was formulated more than fifty years before Lorentz

suggested the electron theory of metals.

Weber claimed the electrical forces exerted on the char-

ges were passed on by the charges to the body of the metal.

With today's picture of the atomic and electronic structure

of metals it is easy to see that this is true for the statio-

nary positive ions. How .the conduction electrons exert steady

ponderomotive forces on the lattice has remained a mystery

ever since Weber formulated his theory.

It will be realized that if the positive charges are

reaoved from Weber's current eleaents, the forces described

by (1.131) and (1.132) bacoae zero and all ugnetlc effects

of the electric current would disappear. It Is fair to say,

therefore, the whole of the Ampere-Nauaann electrodynamics

depends on the interplay between positive and negative char-

ges in metallic current eleaents. Bither charge, but not

both, may be isMbile. In contrast to this, the metallic

current element proposed by Lorentz is Just a negative elec-

tron. Today's electromagnets have all been designed on the
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assumption that the positive ions of the conductor lattice

make no contribution to the magnetic effect of the current.

This represents a major departure from the Weber electrodyna-

mics.

In terms of modern field theory, the total force an

electron of charge -e experiences in the presence at its

location of an electric field strength E and a magnetic

flux density B is

F = -e(E vxB) , (1 .133)

where v is the relative velocity between the electron and

the observer of special relativity. This is said to hold for

electrons in vacuum and conduction electrons in metals.

(1.133) is )cnown as the Lorentz equation or the Lorentz

force. The first term is the Coulomb interaction of the

electron with other charges which are responsible for the

E-field. It is now common practice, as for example in

reference 134), to derive (1.133) directly from special

relativity by analyzing the interaction of two charges in

relative notion with respect to each other. This is not

how Lorentz found his important formula in the 1890s, before

the publication of Einstein's special relativity theory

[20]. Lorentz accepted (1.133) as an empirical fact of

the ion dynamics in vacuum when treated in conjunction with

Maxwell's field equations. This is how Lorentz expressed

his way of thin)(ing in 1909 [29] when the electron theory

had reached maturity:

"However this may be, we must certainly spealc of such

a thing as the force acting on a charge, or on an

electron, on charged matter, whichever appellation

you prefer. Now, in accordance with the general prin-

ciples of Maxwell's theory, we shall consider this force

as caused by the state of the ether, and even, since

this medium pervades the electrons, as exerted
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where there is a charge. If we divide the whole elec-

tron into elements of volume, there will be a force

acting on each element and determined by the state

of the ether existing within it. We shall suppose

that this force is proportional to the charge of

the element, so that we only want to know the force

acting per unit charge. This is what we can now pro-

perly call the 'electric force'. We shall represent

it by f. The formula by which it is determined, and

which is the one we still have to add to Maxwell's

equations is as follows:

f - d (l/c)(VKh)

Like our former equations, it is got by generalizing

the results of electromagnetic experiments. The first

term represents the force acting on an electron in

an electrostatic field; indeed, in this case, the

force per unit charge must be *4iolly determined by

the dielectric displacement. On the other hand, the

part of the force expressed by the second term may
be derived from the law according to which an eleiMnt
of a wire carrying a current is acted on by a magnetic
field with a force perpendicular to Itself and the
lines of force, an action, which in our units may
be represented in vector notation by

I • (i/cXiKh)

-here
1 is the Intensity of the current conmidarad

as a vector, and s the length of the element. Accord-
ng to the theory of electrons, £ i. ^de up of all
the force, with which the field h act. on the .eparate
•l^tron. moving in the wire. Now, .ImpUfying the^tion by the ...umption of only one Kind of «>ving
•lectron. with equal charge. . and a cc^n velocityv, we may write
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Si, - Nev

if N is the whole number of these particles in the
element s. Hence

F - (Ne/c)(vxh)

so that, dividing by Ne, we find for the force per
unit charge

(l/cXv^h)

As an interesting and simple application of this

result, I may mention the explanation it affords

of the induction current that is produced in a wire

moving across the magnetic lines of force."

It is important to note Lorentz's remark about his force

equation having been "got by generalizing the results of

electromagnetic experiments'*. The derivation of eqxiation

(1.89) illustrates the part played by the Lorentz force

In Grassmann's electrodynamics. Grassmann never claimed

this force to be a generalization of experimental results.

He simply did not like Ampere's law, as is evident from

the quotation on page 49, because this law was too compli-

cated and gave a zero force for parallel elements inclined

at an angle of 35.26* to the line joining them. Neither

Grassmann nor Lorentz appear to have paid much attention

to, or were concerned about, the imbalance of the reaction

forces on a pair of current elements, and the effect this

may have on the compliance of electrodynamics with Newton's

third law of motion.

Lorentz iwnediately recognized that, within the framework

of field theory, the electron cannot be treated as a point

charge. The electric field strength due to a charge obeys

an Inverse square law and, therefore, should be infinite
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at the location of the charge. It also Implies the storage

of an infinite anount of energy. To Lorentz it looked an

unlikely state of affairs and it still does so today, nearly

a century later, with relativity and quantum theory firmly

established in the armory of theoretical physics. This pro-

blem does not arise in the Ampere-Neumann electrodynamics

because energy is associated with the mutual force of inter-

action of at least two particles, or components of particles,

and never with an isolated entity of matter.

The disappearance of Ampere's force law from textbooks

and the teaching of electromagnetism was primarily the result

of the failure of the law to cope with the interactions

of charges convecting through vacuum. Furthermore, when

equating convecting electrons in vacuum to amperian current

elements. Ampere's force law (1.24) no longer agrees with

Weber's law (1.90), and both laws are then in conflict with

the Grassmann-Lorentz force. Consider the two cases (a)

and (b) illustrated in fig. 23. In (a) two electrons convect

(X)NVB(mON (nJRRENTS IN VACUUM

cw

Fig. 23 Ueber and Ampere forces between electrons
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side-by-side at the common velocity v. Their relative veloci-

ty dr/dt-O, and therefore the Weber force between them is

simply the Coulomb repulsion

^^W,l ' ^s^"^' (1.134)

where eg is the electronic charge in electrostatic units

(e.s.u.). The corresponding current elements, indicated

in fig. 23 by large arrows, point in the direction opposite

to the electron motion, because the direction of a current

is the direction in which positive charges would move. We

now have to transform the current elements into products

of charge and velocity. For this we have Lorentz's hypothesis

ijjjdm - i^dn - (e^^/Ov (1.135)

where e^^^ is the electronic charge in electromagnetic units

(e.m.u). The electromagnetic and electrostatic units of

charge have different dimensions and are related by

1 e.m.u. of charge - c x 1 e.s.u. of charge (1.136)

With this relationship between the two types of charge,

the Ampere force between the two current elements (a) of

fig. 23 may be written

^^A,l " -2oJjV»/r«c* (1.137)

Hence AP^^ ^ and AF^ ^ are opposite in direction and different

in magnitude. This proves that a convecting electron of

Weber's theory cannot be equated to an anperian current

element. The same conclusion can be drawn from fig. 23(b)

which refers to a situation of two electrons moving relative

to each other with velocity 2v. According to Weber's law

(1.90) these two electrons repel each other less than would

two electrons at rest with respect to each other. The mutual

force actually comes to
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W,2
" (e'g/rM[l-(2v»/cMl (1.138)

while the corresponding Ampere force is one of attraction

and given by

AF. , - -(e«/r»)(v/c)« (1. 139)
A, 2 m

Next it might be asked whether Weber's convecting charges

exert forces on each other that agree with the Lorentz equa-

tion (1.133)? In the case of fig. 23(a), the Weber force

is simply the first term of (1.133). Weber's law does not

embrace a component corresponding to the Lorentz force ev

xB. In the Lorentz theory, or more precisely in the special

theory of relativity, the eyxB component can be made to

disappear by allowing the observer to travel with one of

the electrons. In this one special way of observing the

forces, there is agreement beti^n the Weber and Lorentz

equations. When the forces are measured in the laboratory

rest- frame, the Lorentz force produces attraction between

the electrons which subtracts from the Coulomb repulsion,

but Weber's force remains the same, for the newtonian laws

are independent of the positioning of observers. For the

electron motion depicted In fig. 23(b), the Lorentz equation

reduces to (Coulomb's law because B-0 along the velocity

vector, and this disagrees with Weber's force. In general,

therefore, Weber's and Lorentz 's electron theories are not

in accord with each other so far as the electromagnetic

forces acting between convecting charges in vacuum are con-

cerned. Both Ampere's and Weber's law seem to fall under

these circumstances. This Is the reason why the empirical

Ampere-Neumann electrodynamics has to be restricted to metal-

lic conductors for which it was originally devised.
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CHAPTER 2

LONGITUDINAL AraF>ERE KOROES

AMPERE TENSION

When two current elements lie on a straight line and

point in the same direction, the angles of Ampere's force

law (see fig. 3) are EsO and (K=psO or 180". This reduces

the angle function of (1.24) to -1 and the mutual force

between the elements is seen to be

AF„ „ - i„i„(dm.dn/r„ (2.1)m^n mn m^n

This latter expression is always positive and therefore

represents repulsion. If the two elements belong to the

same rigid metallic conductor, they will create tension

in the inter-atomic bonds between the elements. This will

be called Ampere tension.

The tensile interaction will be greatest for two neigh-

boring in-line elements. Let us take two cubic elements

of side r, such that dm=dn=r; ^«r. Furthermore, for

the same current in both elements i^^i^si. Then we may

express the interaction by

AF^ ^ « i' (e.m.u.). (2.2)

This shows immediately that in fundamental electromagnetic

units ponderomotive force has the dimension of current

squared. If i^ is the current when r^r^ , then the current

density is j«i^/r^'. If we keep the current density constant

while r is being reduced, equ.(2.2) becomes

(2.3)
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That is for constant current density, the force between

adiacent co-linear elements reduces with the fourth power

of the element side. When r tends to zero, the force tends

to zero Therefore no singularities occur in the calculation

of Ampere tension when the filament diameter tends to zero,

on this point the first edition of this book was in error.

The author thanks Dr. Assis for the correction.

When the co-linear current elements belong to separate

solid netal circuits, they do not give rise to tension in

either one of the circuits, but will strain the structure

that keeps the circuits in place. Hence Ampere tension

reveals itself only in isolated current-carrying circuits.

The order of magnitude of Ampere tension and the resulting

tensile stress are indicated by the graphs of fig. 24.

Tension and stress depend quite strongly on the shape and

size of the conductor cross-section and are greatest for

50 100 k^'t"

Cunenl dcntily

Fig.24 Order of magnitude of Ampere tension and stress

round conductors. The plot of Ampere tension versus current
indicau. that the effect i. eLost negligible below 10 kA
•«J very large above 100 kA. m meg.-.mpere circuits Ampere
fnsion is iiKeiy to be the dominant design par.mster.
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Most conductors used for the transmission and distribu-

tion of electricity carry less than 10 kA continuously.

The largest power conductors have cross-sectional areas

ranging from 60 to 100 cm* in order to keep them cool and

waste as little energy as possible. Tensile stresses in

the widely used copper and aluminum conductors are then

less than 1 N/cm' . They are negligible compared to thermally

induced stresses, created by Joule heating, and other support

and weight induced stresses. This explains why Ampere tension

has gone unnoticed in a century of electric power distribu-

tion. Substantially larger currents may flow for brief pe-

riods of time when power circuits are accidentally short-cir-

cuited or struck by lightning. Fault currents of this nature

are known to have reached 100 kA. This implies power conduc-

tors may occasionally experience tensile impulses up to

5000 N lasting for a few cycles of the poorer frequency.

Since the Ampere tension is proportional to the square of

the instantaneous current, an ac current will set up a ten-

sion corresponding to the root-mean-square amplitude pulsat-

ing unidirectlonally at twice the ac frequency.

Ampere tension will play a major role in pulse-power

circuits where cxirrents in excess of 100 kA are commonplace.

Current pulses of this magnitude are used in railguns and

other electromagnetic accelerators, in plasma fusion experi-

ments, in the simulation of the electromagnetic pulse (ENP)

of a nuclear explosion, in laser drives of space iraapons,

in exploding wires and fuses, in opening switches for the

discharge of inductively stored energy, in comutating inter-

rupters of capacitor discharges, in dipole and other pulse

magnets, and so on.

Most of the Ampere tension is being generated between

close-neighbor current elements. It is therefore not a pheno-

menon occurring only in straight wires, but applies to all

circuit shapes. It seems wherever an electric current flows

in a metallic conductor, there will be tension induced in
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the metal lattice. The question arises: can close-neighbor

repulsion be cancelled by the interaction of the elements

with many others in a near or remote branch of the circuit

used to return the current to the power source? No categori-

cal answer can be given at the time of writing. However,

the limited evidence now available suggests the tension

cannot be eliminated and. if anything, will be enhanced

by the current return circuit. This conclusion has been

drawn from the following analysis of a square circuit. As

there are no analytical solutions available, the task had

to be accomplished by finite current element analysis. The

principal rules of finite current element analysis are:

1. Current elements are volume elements designed to

fill the space occupied by the conductor metal.

2. Experience has shown that the lenqth-to-wldth ratio

of the element must be approximately one, or the

calculation may diverge widely from force measure-

ment.

3. The location of the current element Is a point

at its geometrical center.

4. Strings of touching elements are aligned along

current streamlines. A single string of elements

will be called a current filament.

5. At comers of circuits and. In fact, everywhere

along a curved filament, there may have to be some

overlap of adjacent elements. This is the major

defect of finite current element analysis as It

stands at the time of writing.

An infinitely long, straight conductor could be and

has been treated as a closed circuit. Yet It would be futile

to analyze it because, even with finite element*, the Ampere
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formula would give infinite tension at every point along

the conductor. To prove anything about Ampere tension the

investigation has to concentrate on closed metallic circuits

of finite size. In a straight portion of a finite circuit

the elemental repulsion indicated by (2.1) should create

tensile stress. In order to determine to what extent this

stress is modified by the presence of the remainder of the

circuit we consider the example illustrated by fig. 25. A

square circuit carries a steady current 1 and is adequately

cooled to ensure constant temperature. Sides BC, CD, and

AD of the circuit are firmly embedded in a dielectric struc-

ture which is rigidly anchored to the laboratory frame.

AB is a free length of wire resting against a wall meant

to absorb the lateral force on AB.

Pig. 25 Square circuit with one free side

Let T^/i' be the specific tension in interatomic bonds

across plane X intersecting the wire AB. As further shown

by fig. 25, each side of the square is assumed to be divided

into z equaHength elements thin enough so that the conduc-

tor may be treated as a single filament.
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A major contribution to Tj^ will come from the repulsion

exerted by the general elements m in AX on the general ele-

ments n in XB. Since (2.1) is independent of the unit of

length we may choose this to be

din - dn - 1 unit of length (2.4)

With the labeling of current elements indicated on fig. 25.

the distance between the two general elements may be written

^m,n ' ^2.5)

The specific (tension/square-of-current) tension contribution

by the m-n element combinations Is

Vi' - I I [l/(n-n)«) (2.6)
mel n-x+l

This will be a maxlnun when x-z/2.

Next we consider the interactions of ciirrent elements

in AB with other elements In sides BC and AD. The Interac-

tions In question are all repulsions. This is due to the

fact that the angle function (2co8C-3cosa cos 6) Is negative

for all relevant element combinations. Now we have to make

some assumption about the mechanical behavior of the unsup-

ported wire AB. It is very thin compared to Its length and

it will therefore have little strength as a strut, while

being quite strong In resisting tension. Wa therefore treat

it like an Ideal string, recognizing that this must involve

some approximation. Interactions between BC and BX are taken

up by the tensile strength of the wire and do not exert

tension on the atomic bonds across plane X. The same is

true for interactions between AD and AX. However the repul-

sion between BC and AX, as well as between AD and XB, adds

to Tx . This is due to AX and XB having no column strength.

Hence by resolving the latter repulsions along AB %m obtain

the second contribution to the specific tension across plane
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that is

z 2

T2/i'

Z I )cos^a sina
m=l q=l

(2.7)

where

p,n
(n-0.5)2 (p-0.5)* (2.8)

q,m - (z-m*0.5)* (q-0,5)* (2.9)

coson - (n-0.5)/rj
P,n' sina^ - (p-0.5)/rjP,n (2.10)

cosa^ - (z-in*0.5)/r^ sina^ - (q-0.5)/r q̂.m (2.11)

The 0.5 terms arise from the fact that the position of the

current element is a point halfway along its length.

The third contribution to Tjj derives from interactions

between AB and CD. The angle function for this side pair

has everywhere cose --1 and -cosg -cosa . Furthermore, since

o varies from 45 to 135*, 2cosG-3cosa cosB --2*3cos*a . This

is never positive and then, because of the negative sign

of (1.24)« all interactions are again repulsions.

It is convenient to split CD by the plane X with general

elements u on one side and v on the other. Symmetry ensures

that every elemental repulsion with an upward longitudinal

component is offset by a symmetrical interaction with a

corresponding downward component. Therefore actions of XC

on XB do not contribute to T^ . The same is true for actions

of DX on AX. However tensile forces will be produced in

AB by the actions of XC on AX and by DX on XB. They give

(2.12)
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where

cosoy • (v-m)/rB,^v

cosa^ . (n-u)/rn^u

(2.13)

(2.14)

(2.15)

(2.16)

The total specific tension in the wire AB may then be

obtained by adding (2.6), (2.7), and (2.12):

(2.17)

Fig. 26 Specific tension in free side of square circuit

Fig. 26 is a plot of the three tension ooaponents and their

SUB for z-1000. In the alddle of AB the tension is seen
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to be largely due to the repulsion of col linear elements.

Near the ends of the side it is mostly produced by actions

across the corners A and B. Side CD makes only a small con-

tribution to the tension in AB.

It can easily be shown that the computed tension in-

creases with z. At first sight this appears to be an unsatis-

factory outcome of the Ampere electrodynamics. However this

difficulty can be overcome by making reasonable assumptions

about the length-to-width ratio of the current element.

As a first step we calculate the most important tension

contribution given by (2.6) across the midplane at x-z/2.

Table 1

Computer evaluation of (2.6) for z varying from 20 to 200

and x-z/2

z Ti/i^

20 3.188
30 3.593
40 3.880
50 4.103

60 4.285
70 4.369
80 4.573
90 4.691

100 4.796

110 4.891
120 4.978
130 5.058
140 5.133
150 5.202

160 5.266
170 5.327
180 5.384
190 5.438
200 5.489

Table 1 lists the results for z varying fron 20 to 200.

A regression analysis perfomed on this data revealed a
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very close fit to

T^/i' - 0.19 In z (2.18)

It can be shown that the specific tension contributions

T2/i^ and 13/1^ obey similar logarithmic laws. Hence Tj^/i*

will also be a logarithmic function of z. For z-1000, equa-

tion (2.18) gives the specific tension of 7.098 as compared

to 7.099 obtained by finite element analysis. This very

good agreement gives us confidence in extrapolations of

(2.18) to much larger values of z which otherwise would

have to be obtained by an excessive computing expenditure.

Equation (2.18) tends to infinity with z. If the current

element is assumed to be infinitely divisible, as Ampere

did, his electrodynamics becomes absurd. The same is true

for an electrodynamics based on the Lorentz force law. Ue

really have no choice but to accept finite size elements.

Could the lower element size limit be determined by the

distance between neighboring atoms of the metal lattice?

This would be of the order of 10"' cm. It would amount to

10* current elements in AB of fig. 25, if the latter side

is 100 cm long. Equation (2.18) then gives a specific tension

of 20.91 which is only three times the tension obtained

for z-1000. It is not an unreasonably large number and there-

fore lends some support to the idea that the atomic cell

is the extent of the basic current element.

It appears plausible that the reduction In current ele-

ment length from macroscopic to microscopic dimensions should

be accompanied by a similar reduction In the cross-sectional

dimension of the element. In other %iords the specific tension

of 20.91 probably applies to a conductor of ICT' cm In dia-

meter and 100 cm long. For conductors of larger diameter,

the atomic element concept requires the consideration of

a bunch of parallel filaments, each being essentially a

string of atoms. How this leads to 'longitudinal force dilu-

tion' will be discussed later.
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NASILOWSKI'S DISCOVERY OF WIRE FRAGMENTATION

Ampere revlewd his research in the field of electrodyna-

mics most completely in reference [36], which has been repub-

lished as recently as 1958. There is indirect evidence for

the existence of longitudinal forces in a number of his

experiments. It could not have been otherwise, for his force

law is merely a generalization of many experimental results

obtained with circuits consisting of copper wires and liquid

mercury cups and troughs. Blondel [37] in her excellent

historical review "Ampere et la Creation de 1 'Electrodyna-

mlque" i>olnts out that on June 24, 1822, Ampere announced

his formula required col linear current elements to repel

each other, and that this prediction would be put to a direct

test by A. de La Rive in Geneva. The experiment was performed

shortly afterwards with Ampere present in de La Rive's labora-

tory. At the time It was considered to be an unqualified

triumph of Ampere's theory. After the formulation of the

Grassmann-Lorentz force law there arose much controversy

about the Geneva experiment which will be fully discussed

In a later section. Because of the shape of the conductor

Involved we will refer to the Geneva test as Ampere's hairpin

experiment. Faraday repeated It in London, and Ampere wrote

to him [37] In 1825 that. In some way, this experiment re-

veals the fundamental fact of electrodynamics.

Up to about 1960 all experimental evidence for longitudi-

nal Ampere forces had been collected with circuits containing

some liquid metal which permitted the measurement of small

forces, or relative conductor motion, for easily realized,

steady currents of 1000 A or less. The analysis of electrody-

namic phenomena In liquid metals, normally called magneto-hy-

dro-dynamics (MHO), Is more complex than the calculation

of ponderomotlve forces in solid conductors. The oalsslon

of NHD considerations by Ampere contributed much to the

controversy surrounding his hairpin experiment.
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The first experiments revealing the effect of Ampere

tension without using liquid metals were performed by Nasi-

lowski [38, 39. 40] in Warsaw. He was studying the behavior

of copper wires when subjected to a sudden current pulse.

The pulse amplitudes were quite small, up to approximately

2000 A, but the pulse duration was relatively long and of

the order of 50 ms. Nasilowski's current pulses were gene-

rated by a rotating machine. He found that during a stepwise

increase in current amplitude a point would be reached when

a straight wire would fracture in the solid state at one

or more places. An electric arc in air formed immediately

across each fracture gap and the current continued to flow

without interruption. Figure 27 shows open-shutter photo-

graphs of three wire disintegrations of 0.5 mm diameter

copper wires of 56 cm length at three different voltages

or current amplitudes. The smallest of the current amplitudes

produced the arcs of (a) and the largest the arcs of (c).

"19-27 Mire fracture arcs photo,raphed by Nasllowski
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The open-shutter photography indicates by the exposed

areas of light which arcs have been burning the longest.

It would be surprising if all the wire fractures occurred

at precisely the same time. The fracture sequence is of

interest for what it may reveal about the tension producing

mechanism. The photographs demonstrate, by the light areas,

that the first breaks occurred at the ends of the straight

wire sections. Nasilowski striing his wires horizontally

between two posts. Heavier leads connected the generator

with joints at the two posts. At each post there was a corner

in the circuit. This is important because the Ampere tension

is greatest right at a corner. The remaining early breaks

are fairly widely spaced from each other. Other prominent

features of the arc photographs are the increase in the

number of breaks with current amplitude and the great number

of arcs than can be formed without striking an overall arc.

It should also be noted that the wires apparently did not

move laterally although the force per unit length in that

direction must have been of the same order of magnitude

as the Ampere tension. It is an indication of the effective-

ness of inertlal positon confinement on the Billisecond

time scale. The waviness along the wires might possibly

be the result of thermal expansion prior to wire fracture.

The thermal forces are probably so strong that they cannot

be inertlal ly confined.

From the point of view of the Ampere electrodynamics

one would expect straight and curved wire sections to rupture

somewhere along their length before any melting can take

place provided the pulse time is greater than the crack

formation time. An air arc should Immediately bridge the

fracture gap because of the high voltage that would be in-

duced by a sharp drop in current. The continuation of current

flow ensures the continued existence of Ampere tension.

Wire sections between arc gaps are mechanically decoupled

from the rest of the circuit, and the tension that can deve-

lop within each inegral section depends on the length of
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that section. The shortest wire fragment's produced are about

of the same length as the wire diameter. The sum of the

voltage drops along the series-connected bridging arcs should

severely limit, if not extinguish, the current. Premature

current extinction has indeed been observed by many investi-

gators of exploding wire phenomena when the current source

was a capacitor bank. With the energy being stored in an

inductance, the current cannot be interrupted until all

the energy is discharged.

In one of his papers [391 Nasilowski shows six photo-

graphs. Two of them depict a collection of fragments of

his 1 mm diameter, 1.5 m long copper wire. The diameter

of the fragments looks the same as that of the original

wire and the fracture faces are nearly perpendicular to

the wire axis. The length of the fragments varies between

3 and 10 mm. The other four photographs are of metallurgical

sections through some fragments. In the longitudinal direc

tion, to probe the Internal grain structure and visible

signs of crack initiation. Baxter [41] has measured the

temperature distribution along fuse wires subjected to cur-

rent pulses. Except for end-effects, he found that the wire

temperature rose uniformly over the wire length right up

to the melting point. Nasilowskl's work confirmed that melt-

ing also occurred uniformly along the wire, with the boundary

between the molten and the solid phase being a cylindrical

surface moving radially Inward. Hence wire fragmentation

could not be the result of preferential melting at some

locations along the wire.

The metallurgical evidence indicated that in some of

Nasilowskl's experiments fracture had taken place without

any change in the grain structure of the body of the wire

and therefore without any prior melting. But the electric

arc bridging the gap between adjacent fragments, subsequent

to fracture, produced a snail amount of freshly molten mate-

rial which adhered to the fracture faces and was recognizable
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by its dendritic structure. Nasilowski's metallurgical tests

clearly indicated that the wire had parted in the solid

state under the action of tension. Fig. 28 shows 1 mm diameter

copper wire fragments produced in Nasilowski's experiments

in 1960. At the time he was not aware of Ampere's force

law and could not offer a satisfactory explanation of his

observations. He recognized that longitudinal forces were

at work and confirmed their existence with a longitudinal

force transducer. In practical terms, Nasilowski had demon-

strated that wire fuses do not simply melt away, but are

likely to fragment into many short pieces before melting.

The conecting arcs in air then perform a current limiting

function.

Pig. 26 Copper wire fragments of Nasilowski's experiment

The author repeated Nasilowski's experiment in nodified

form at the Massachusetts Institute of Technology in 1982

[42, 43]. Aluminufli wires of 99 percent purity and 1.2 im

diameter were subjected to current pulses of 5000 to 7000

A amplitude. The current was derived from a high-voltage

capacitor bank and passed through an inductor to allow it

to ring down at 2000 Hz over a period of five to ten milli-

seconds. When the capacitor bank was charged to 60 kV, the
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discharge current would decay approximately exponentially,

as shown by the oscillogram of fig. 29(a), without breaking

the wire. It has been estimated that the 60 kV discharge

was accompanied by a wire temperature rise of several hundred

degrees centigrade which must have resulted in a thermal

extension of the order of one percent.

Fig. 29 Discharge current oscillograms; y-3kA/cm, x-lms/cm.

(a) at 60 kV: (b) at 68 kV

By subsequent increases of the discharge voltage in

steps of 2 kV, a pulse current level was reached at which

the wire broke in one or more places. The hot fragments

would fall to the floor and be distorted on impact. When

repeating the test with a new wire and 2 kV additional volt-

age, the wire would break into a greater number of pieces.

At the 66 and 68 kV levels a one meter long wire would frag-

ment into 20 - 30 pieces. Finally, at 70 kV, the test wire

would show clear signs of melting which obliterated much

of the tensile break evidence. The oscillograin of fig. 29(b)

indicates discharge current limiting and quenching due to
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the many arcs across fracture gaps.

The strongest indication of Ampere tension was obtained

with straight, one meter long wires mounted vertically,

as shown in fig. 30. The wires were held in position with

cotton threads, leaving 1 cm long arc gaps in air between

the wire ends and two terminations of the capacitor- inductor

series circuit. When the discharge circuit was closed with

a mechanical switch, the two one-centimeter arc gaps would

break down, allowing the current pulse to flow through the

test wire. The purpose of the arc gaps was to allow distor-

tion-free thermal expansion and to disconnect the wire mecha-

nically from the fixed discharge circuit.

1 cm
ore QOp -T-

100 cm

1.2 mm DIA.

1 cm
ore gap

Fig. 30 Suspension of wire to be fragmented

Figure 31(a) shows a collection of aluminum wire frag-

ments produced by these experiments. Their distortions was

caused by impact on the laboratory floor while they were

hot. Photograph (b) clearly depicts transverse fractures

which were spot-%#elded together again by arcing across the

fracture gaps. Figure 31(c) Is an optical micrograph of

one fragment end. Illustrating the brittle nature of the
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fracture. The last photograph (di ot n frarturf^ f n^f^ w.is

taken by scanninq electron microscopy. Similar m i cr oqr .iphs

of greater magnification revealed micron-doo^i m(H t i nq of

the fracture surface, consistent with arcing across the

fracture gap.

Fig. 31 Fragments of a 1.2 mm diameter aluminum wire

(a) collection of fragments from several experiments

(b) fragments reconnected by arc spot-welding

(c) optical micrograph of fracture face

(d) scanning electron micrograph of fracture face

Provided the wire is treated as a bundle of filaments,

the transverse pinch force may be calculated with Ampere's

or the Lorentz force law. Pinch forces are potentially able

to extrude soft wire. However, Northrup's analysis (44)

proves that the extrusion force is less than one-tenth of

the magnitude of the Ampere tension. For this reason, and

even more because no significant diameter reduction (neck
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formation) has been observed near the fracture faces, it

seems certain that pinch-off was not the cause of wire frag-

mentation .

Considerable thought has been given to the possibility

of the wire fractures being the result of travelling stress

waves or thermal shock. The velocity of sound in the conduc-

tor metals is of the order of 5000 m/s. Hence a stress wave

could travel the length of the wires used by Nasilowski

and the author In 0.1 to 0.3 ms. Tensile stress magnification

by multiple reflections from the wire ends or anchors is

therefore not out of the question. Nasilowski employed a

unidirectional current pulse. The radial pinch force was

not removed from his wire until the current ceased to flow.

Only after the end of the pulse could pinch force relaxation

have produced travelling stress waves. But with the aid

of voltage drop measurements Nasilowski proved that the

wire broke well before the end of his pulse. Nasllowski's

wire fragmentation evidence, therefore, cannot be explained

with travelling stress waves.

A dynamic thermal shock model has been examined. Consider

a straight aluminum wire of one meter length. When heated

close to the melting point its length will increase approxi-

mately 1.4 cm. During the pulse period each end of the wire

would be displaced 0.7 cm. If the pulse lasts for 5 ns,

as in the shortest of the MIT experiments, the last centime-

ter on either end of the wire would attain an average veloci-

ty of 140 m/s. For a wire of 1.2 mm diameter, the mass per

centimeter comes to 0.03 g, giving a kinetic energy of the

last centimeter of 300 erg. Allowing for only ten percent

elongation of hot aluminum before fracture, the average

tensile force required to absorb the kinetic energy comes

to only 3 gram-weight, which Is negligible. The calculated

Ampere tension of the NIT wire fragmentation experiments

was of the order of 25 N.



114

The extent to which wire fragmentation experiments con-

firm the Ampere tension mechanism is quite remarkable. In

Nasilowski's setup the first breaks did occur at the corners

of the circuit where the tensile stress is greatest, because

across the corners transverse and longitudinal forces combine

to break the wire. Equations (2.6) and (2.18) claim that

the Ampere tension is greatest in the middle of a straight,

integral wire section, and that this maximum tension increa-

ses logarithmically with section length. Hence we may expect

the early breaks in a long, straight wire to be widely sepa-

rated, rather than bunched together. Nasilowski's arc photo-

graphs confirm this expectation. There should be a lower

limit of fragment length below which the Ampere tension

becomes too small to cause further breaks. This appears

to be confirmed by figs. 28 and 31Ca) and (b). The shortest

fragments ever observed were only a little longer than one

wire diameter. The number of fragments produced per current

pulse should, for two reasons, increase with pulse amplitude.

First, the Ampere tension increases with the square of pulse

amplitude, and, secondly, the wire temperature rises and

thereby reduces the tensile strength of the wire. Figure

27 is proof of the greater number of fragments resulting

from increased pulse amplitude. The very short period of

time during which Ampere tension exists should be insuffi-

cient to allow much plastic deformation and the wire frac-

tures should have the appearance of brittle impact failures.

This is confirmed by the fragment photographs of figs. 28

and 31.

The following quantitative considerations also support

the Ampere tension mechanism. A 100 cm long, 1.2 mn diameter

aluminum wire of the HIT experiments %feighed

three gram. For a peak current amplitude of 6000 A it should

have experienced a maximum Ampere tension stress of 231

kg/cm'. This is equal to the ultimate strength of the mate-

rial at around 300*C. The impact strength of the metal will

be less. Therefore the first break in the wire could occur
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pieces manage to separate in the a:a:[abie time The repul-

sion between the two wire portions is equal to the Ampere

tension just before the break. If the break occurs halfway

along the one-meter wire, calculations show that it should

have been subject to an acceleration of 1713 times that

of gravity. In 0.1 ms this would produce a wire separation

of 0.08 mm which seems adequate for a clean break.

Bruce [45] recently performed

an experiment at the Center for

Electromagnetics Research at North-

eastern University in which Ampere

tension manifested itself in yet

another way. He took a ij-inch diame-

ter copper rod and cut it up in

50 pieces, each 2 cm long. He then

reassembled the pieces in a vertical

glass tube and pressed them together

with a spring. When a certain cur-

rent pulse was passed along the

assembled copper pieces, they all

separated by a small distance and

arcs formed across the cuts, as

shown in the open-shutter photograph

of fig. 32. What in the wire fragmen-

tation experiments was Ampere ten-

sion became, in Bruce "s experiment,

a repulsive separation force acting

between neighboring pieces of copper

rod. These forces would have been

far too small to fracture a (j-inch

copper rod. but they proved suffi-

cient to overcome the rod inertia

and open gaps up to one millimeter

in length.

Fig- 32 Brur
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PAPPAS' ELECTRODYNAMIC IPIPULSE PENDULUM

Over the years a number of researchers have performed

Ampere's hairpin experiment with various modifications with-

out very conclusive results. The problem has been that the

Ampere and Lorentz laws predicted hairpin propulsion forces

of nearly the same magnitude. The difference manifested

itself only in the location of the forces and their reac-

tions. The Lorentz force is supposed to pull the hairpin

from the front and have its reaction in the field. The Ampere

force, by contrast, should push the hairpin from the back,

and have its reaction force in the metal of the remainder

of the circuit. It appeared impossible to devise an experi-

ment capable of distinguishing between those tvro mechanisms.

The deadlock was finally broken by Pappas [46] in Athens

with an ingenious pendulum experiment. To understand the

Pappas experiment we have to delve a little into field theory

and its relativistic ramifications.

Ever since the elastic properties of the aether were

abandoned to accomodate the special theory of relativity,

it was felt that another mechanism for absorbing reaction

forces in the field (vacuum) was required. It is field reac-

tions, or magnetic pressure, that counteract Lorentz forces

exerted on current carrying metallic conductors. The gene-

rally accepted view, as expressed for example in reference

[47], is that the rate of change of electromagnetic momentum

in the field can support force which accelerates or decele-

rates magnetic field energy to and from the velocity of

light c. The energy omentum density is related to the Poynt-

ing vector by

£ . (l/c*)(ExH) (2.19)

where E and H are the electric and magnetic field strengths

at a point. The volume integral of the rate of change of

this momentum density over all space gives the vacuum reac-
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tion force

Pvac " /(dE/dt)dv - (1/cM /(d/dt)E^H)dv (2.20)

where t stands for time and v for volume. When the integral

is not taken over all space, the rate of change of momentum

may be smaller than indicated by equ.(2.20). It is customary

to make up the difference by the surface integral of Max-

well's stress tensor over the finite volume of the momentum

integral. With the integral being taken over all space,

and for any instant in time, the vacuum reaction force may

be written

^vac " Cd/dtXBgC) (2.21)

where is the equivalent electromagnetic mass of the mag-

netic energy stored in the field. Since c is a constant,

the vacuum force will only exist when changes with time,

that is when magnetic energy is radiated into the field

or absorbed from the field by a conducting body. The amount

of field energy U^that must at any time be associated with

the vacuum reaction force is

Uf - m^c* (2.22)

This is the famous mass-energy relation of special relativi-

ty.

If Py^c tines the simultaneous reaction force

to the Lorentz force when the latter accelerates a metal-

lic conductor object of real mass m from zero to the velocity

u, then monentun conservation is expressed by

m.u - /p.dv - i^c (2.23)

The last equation Implies that Newton's third law is obeyed

and the electronagnetic mass i^has the inertia of real mass.
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but no weight. The field energy which has to be radiated

or absorbed by the body of the conductor, in order to comply

with (2.23). is

Uf - nigC^ - m.u.c (2.24)

Pappas [46] devised an experiment to check whether that

much energy was actually being supplied to the field. He

powered his experiment with a lead-acid battery and found

that the amount of energy his battery could possibly have

supplied fell far short of the requirement of equ.(2.24).

The Pappas experiment involved an impulse pendulum and is

a variation of Ampere's original hairpin experiment. It

challenges field-energy momentum conservation only in so

far as metallic conductors are concerned.

Because of its far-reaching consequences, the author

repeated the Pappas experiment at NIT and made it a quantita-

tive test. In the HIT experiment the energy available for

Joule heating and conversion to kinetic and electromagnetic

energy was accurately known, as it was drawn from previously

charged capacitors. This was not the case in the Athens

experiment, and therefore we will describe the MIT experiment

fully after a brief discussion of Pappas' arrangement.

Fig. 33 Pappas' impulse pendulum circuit
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Figure 33 is a simplified diagram of the experimental

circuit used at the University of Athens. ABCDEF is a hori-

zontal, rectangular copper circuit and B and E are two mercu-

ry cups. The portion BCDE forms the impulse pendulum hanging

from the laboratory ceiling. The remainder of the circuit

is fixed to the laboratory frame and contains a battery

and a switch in branch AF. When the switch is closed an

instantaneous current i will flow around the copper circuit

and the pendulum is observed to swing in the direction x.

The swing interrupts current flow in the mercury cups.

According to field theory the force responsible for

producing the pendulum motion is the Lorentz force on branch

CD. This force arises from interactions of current-element

pairs governed by the Grassmann formulas (1.85) in which

i.dm is a current element in branch CD and i.dn is a current

element anywhere else in the remainder of the circuit. On

account of the inverse square law contained in (1.85), most

of the acceleration force on the penduliim arises from the

magnetic field of current elements in the legs BC and DB,

that is in the manner indicated in fig. 33 by AF^^.

In the spirit of field theory as taught today, APj^ and

similar contributions to the pendulum acceleration force

should be counteracted by a vacuum reaction force indicated

by on fig. 33. The latter force will ensure compliance

with Newton's third law and linear momentum conservation.

The vacuum reaction force would either decelerate incoming

energy which is then converted to Joule heat, or it could

accelerate energy which is being radiated from the metal

element dm. The incoming energy would be transmitted from

the battery through space by the Poynting vector mechanism,

while the outgoing energy radiatech^om dm must first reach

the element somehow through the metallic conductor. Both

energy streams have to be added together to arrive at the

energy subtracted from the battery or other source. The

vacuum reaction force acts on the space occupied by the
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metal element dm. If it acted on the metal itself it would

cancel the pendulum accelerations force. It will be assumed

little or no energy is being reflected by dm, and no electro-

magnetic mass is being created in mid-space, away from the

metal, which might somehow contribute to momentuin conserva-

tion. As the field energy travels with the constant velocity

c, all of the vacuum reaction force must then arise

at the location of dm. Ue nevertheless extend the integration

in equ. (2.20) over all space to eliminate all posible Maxwell

stresses.

At some finite time t after the current has been switched

on, the mechanical impulse imparted to the pendulum by the

Lorentz force should be equal to the mechanical momentum

aqulred by the pendulum. Furthermore, for momentum conserva-

tion, this mechanical momentum should be equal to the field-

energy momentum change. Hence we may %irite

t t t
/Prdt - m/(du/dt)dt - c/(dm^/dt)dt
0 0 0

- m.u - n^c (2.25)

where

Fl - I I(AF„) (2.26)
D n

with the sunnation over m extending throughout the circuit

branch CD and the suanatlon over n covering the remainder

of the circuit. Since m, u, and c are known we may use (2.25)

to calculate a^, the electromagnetic mass in the field which

ust be furnished by the battery or other energy source.

The total amount of energy that must have been subtracted

from the source up to the tine t is specified by (2.22).

This is the minimum energy of (2.24) required by field theory

to accelerate the pendulum and cover the Joule heating in

the branch CD of the circuit.
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The Pappas experiment permits a comparison to be made

of (1) the Lorentz force impulse with the mechanical momentum

aquired by the pendulum, and (2) the minimum required field

energy with the energy available from the power source.

Pappas concluded that, in the time available, his battery

would have supplied much less energy than was required by

equation (2.24), and that the Lorentz force on the circuit

branch CD was therefore unlikely to be the force accelerating

the pendulum. He pointed out that his experiment favors

the older Ampere force law which explains the pendulum motion

by newtonian repulsion between the fixed and moving parts

of the circuit.

Figure 34 shows the experimental setup of the electrody-

namlc Impulse pendulum used by the author at MIT. The 'hair-

pin' was made of a copper strip 0.5 inch high and 0.05 inch

thick. The strip formed two one-meter long sides and one

30 cm short side of an open rectangle. The pendulum conductor

was mounted on a rigid frame (not shown in fig. 34) of insu-

lating material. The assembly weighed 0.815 kg. The pendulum

was suspended from the laboratory celling by four 2.56 n

long cotton threads. The horizontal displacement of the

pendulum was measured with the cardboard slide C resting

lightly on a flat table top.

The pulse current was derived from an 8 yF high-voltage

capacitor bank which could withstand voltage reversals up

to ±100 kV. The discharge was Initiated by dropping the

mechanical switch S. Two parallel current rails F, of the

same copper strip of which the pendulum was made, brought

the current to the hairpin via two, one-millimeter long,

arc gaps in air. The rails were mounted on a rigid frame

and two heavy stands, weighed down with lead (not shown

in fig. 34), to absorb the recoil impulse of the Ampere law

with a minimum of deflection. The rails were carefully alig-

ned with the horizontal legs of the hairpin pendulum.

To perform a momentum experiment the capacitor bank
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A hairpin pendulum conductor

B cotton suspension threads

C cardboard slide

D flat table top

B 1 mm arc gaps in air

P current rails

G grounded metal stand
H dielectric stand

J 100 kv capacitor bank
K 200 kV charging set
L Rogowski coil

S mechanical switch
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was charged to a voltage between 30 and 80 kV. The switch

was then dropped, causing arcing across the short gaps be-

tween current rails and pendulum legs. The damped oscillatory

current pulse was recorded with the aid of the Rogowski

coil L of fi9-34 and an oscilloscope. The current pulse

did cause the pendulum to swing away from the current rails

and move the cardboard slide through a distance s, subse-

quently measured with a ruler. The duration of the current

pulse was a fraction of a millisecond. Almost all the pendu-

lum displacement occurred after the current had ceased to

flow.

The maximum linear momentum m.u, imparted to the pendulum

by the capacitor discharge, may be calculated from the pendu-

lum length R-2.56 m, its mass m-0.615 kg, and the measured

cardboard slide displacement s. With the aid of fig. 35 it

./

Fig. 35 Pendulum parameters

can be seen that

m.g.h - (l/2)m.u»; or u - /2g.h (2.27)

where g is the acceleration due to gravity, u the maximum

horizontal velocity that would be attained in the limit

when the impulse duration tends to zero, and h is the maximum

vertical lift of the pendulum. The height h may be derived

from the two simultaneous equations
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h - R(l-cose) (2.28)

s - R sine (2.29)

The solution is

h - R[l-/l-(s/'R)M = s«/(2R) (2.30)

The approximation is accurate to three significant figures

and may be used in eq[u.(2.27) to calculate u.

The electrodynamic impulse imparted to the pendulum

by the Lorentz force FL-10~'k i* may be written

P. - 10"' k /i*dt (2.31)
^ 0

t^ere i is the instantaneous current and k (N/A') must be

determined from the geometry of the circuit. A typical dis-

charge oscillogram is reproduced in fig. 36. It shows that

the instantaneous current is of the fom

1 - e'^'^^ Iq sinwt (2.32)

where T is the time constant with which the oscillation

decays. The full amplitude Iq %iould be reached if the circuit

contained negligible resistance. It is possible to integrate

(2.32), as required by (2.31), and obtain

Pi - 10''k If, {(T/4)-(l/T)/[(2/T)«*(2(.j)«) ) (2.33)

with u)-2irf being the radian frequency. As far as the pendulum

experiments are concerned, the second tern of (2.33) is

negligible. Hence the electromagnetic impulse may be taken

to be

Pi - lO"' k I«Q (T/4) (2.34)

The magnitudes of Iq and T were measured on the pulse current

records.
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Fig. 36 Discharge current oscillograjn for 2 uF and 60 kV;

y-7.5 kA/cm: x-0.1 ms/cm

The electric arcs bridging the 1 mm long gaps between

current rails and pendulum legs produced a small amount

of molten copper which streamed away from the gaps, in both

directions, along the copper strips. The evidence of droplet

streaming became unmistakable after the heaviest discharge

currents. The arc pressure must have been responsible for

generating some of the pendulum momentum over and above

the contribution made by the Lorentz force. As the arc pres-

sure must have been symmetrical bet%Men rails and pendulum,

it would not require to be balanced by a vacuum reaction

force.

Approximately 100 discharge shots were carried out at

various voltages and capacitance values. A typical set of

results Is reproduced in table 2. This was obtained with

the full 8 viF capacitance of the bank and therefore involved

the largest currents and pendulum displacements. As long

as the capacitance and circuit configuration was not changed

between shots, the ringing frequency f. the circuit induc-

tance L, the surge impedance Z - /TI7U7 the time constant

T, and the effective damping resistance R all remained con-

stant. Their magnitudes were derived from current oscillo-

grams. For the series of discharge pulses to which table

2 refers, these parameters came to
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f - IS. 7 kHz; L 12.8 uH: - 1.26 ; T • 0.27 ms;

R - 94.8 mn.

Table 2

Set of results of the MIT experiment

Quantity Unit 40 kV 50 kV 60 kV 70 kV 80 kV

'o
A 28 500 35 250 45 000 52 500 60 000

S cm 1.93 3.50 5. 55 7. 75 10.95

m. u kg.m/s 0.0308 0.0558 0.0885 0. 1236 0. 1742

J 5 200 7 950 12 960 17 640 23 040

J 6 400 10 000 14 400 19 600 25 600

J 1 200 2 050 1 440 1 960 2 560

Pi N.s 0.0508 0.0778 0. 1267 0. 1725 0.2253

Uf MJ 15.24 23.34 38.01 51.75 67.56

1 438 1 670 1 840 1 893 2 047

p
Lrinax

N 753 1 152 1 877 2 555 3 337

u cm/s 3.78 6.85 10.86 15.17 21.44

The observed pendulum moaenta listed in table 2 varied

from just over 0.03 to 0 .18 kg. m/s. The kinetic energies

(»sm.u^) associated with these momenta turn out to be less

than one Joule while the energy stored in the capacitors.

Uc was as high as 25.6 kJ. Hence very little of the spent

energy is being converted to kinetic energy. When the Joule

heat generated in the circuit is subtracted from the origi-

nally stored energy, only up to 2.5 kJ remain. This immedia-

tely suggests that most of the field momentum change must

be associated with incoming energy being stopped and conver-

ted to Joule heat.

It has to take a certain amount of energy to establish

the three arcs at the switch and the two gaps B of fig. 34.

This energy is sometimes called the latent heat of arc forma-
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tlon because it eventually appears as heat when the arc

ions recombine. The latent heat of arc formation could con-

ceivably account for several kilo-Joule. indicating that

little may be available for radiation in the field.

It Ls instructive to evaluate the Lorentz force on the

pendulum bridge and integrate it with respect to time to

obtain the impulse which should be balanced by a change

in field energy momentum. A finite element method of comput-

ing the constant k in equ.(2.34) is available (48). In refe-

rence [48] an identical copper strip was considered which

was bent into a rectangular circuit of the same dimensions

as the pendulum. The strip was resolved into ten parallel

filaments of square cross-section. Each filament was then

subdivided into cubic current elements. The computer solution

gave k-9.27 N/A' . This applied to uniform current distribu-

tion over the strip cross-section. At the frequency of 15.7

kHz, to which the results of table 2 refer, the current

distribution will have been very non-uniform, with strong

concentrations near the strip edges. If it is assumed that

all the current flows in the two edge filaments, the constant

in (2.34) comes to k-Il.O N/A' . Therefore the Lorentz force

appears to increase with frequency. A lower limit of this

force is obtained by taking the 9.27-figure. Impulse values

for this lower limit are listed in table 2.

It will be noted that the calculated eiectrodynamic

impulses ?i are greater than the measured linear momenta.

The ratio of the two quantities is approximately 1.4. No

field-theoretic explanation of this discrepancy can be of-

fered. In determining the field energy Uf listed in table

2. the measured m.u-momenta were substituted into equ. (2.24).

Table 2 al^o contains the energies stored in the capaci-

tors. The ratio U^/U^ will be seen to vary between 1400

and 2000. The shortfall in available energy to satisfy field

momentum conservation far outweighs all possible experimental

errors. It supports the claim by Pappas (46) that the Lorentz
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force is not balanced by an equal and opposite reaction

force in the vacuum field.

To obtain an idea of the magnitude of the Lorentz force

on the pendulum in the direction of its swing, we recognize

that it %#ould attain the maximum value of

F. - 9.27xlO-'H (2.35)
L / max 0

at the peak of the first half-cycle of the current, but

for the small exponential decrement due to damping. The

force of (2.35) is also listed in table 2. The figures make

it clear that, if the Lorentz force Is indeed the motive

force, the pendulum should feel a very sharp tug at its

leading edge. The arc pressure is expected to be small com-

pared to this sudden jerk.

Let us now apply Ampere's force law (1.24) to the impulse

pendulum experiment. It predicts a strong repulsion between

each current rail and the portion of the pendulum aligned

with the rail. This provides the major impetus for the pendu-

lum swing. Equation (1.24) adds to this a snail amount for

the interaction of the rails with the pendulum bridge, and

subtracts a little for the attraction of each rail and the

pendulum leg on the other side. On account of the mechanical

decoupling by the arc gaps, the total Ampere repulsion bet-

ween rails and pendulum can be obtained by integration of

(1.24). The finite eleaent method with ten parallel filaments

of cubic elements will yield virtually the same result.

The numerical technique gave the value of k-9.24 N/A' . This

applies to uniform current distribution over the conductor

cross-section. It is remarkably similar to the corresponding

k-9.27 N/A' obtained with the Lorentz force formula.

It has been known for many years that the calculated

Lorentz and Ampere forces on the sides of a 'rectangular'

circuit are almost identical [49]. They differ, however,

with regard to how and where they act on the conductor mate-
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rial. Lorentz forces are always transverse to the current

streamlines and would invariably be in conflict with Newton's

third law unless there exist balancing vacuum reaction for-

ces. Ampere forces produce a strong tensile component along

current streamlines and have all their reaction forces in

the conductor material. For transfer of the electronic Lo-

rentz force to the metal ions one has to rely on the work

function at the conductor surface. This mechanism cannot

produce tension along the current streamlines.

Since the Ampere force interaction of every pair of

material current-elements obeys Newton's third law, the

equality of action and reaction between the two parts of

the metallic circuit of the impulse pendulum experiment

follows automatically. It merely reaffirms that the Ampere

electrodynamics ascribes no physical action to empty space.

The Ampere law claims the pendulum is being pushed from

the rear rather than being pulled from the front. Hence

the hairpin legs may bend and buckle. In this way they must

be expected to store some elastic energy which results in

vibrations rather than linear mechanical momentum. More

elastic energy is likely to be stored in the current rails

P of fig. 34. In the Ampere electrodynamics it seems plausible

that not all of the impulse should be converted to momen-

tum n.u, unless the apparatus is infinitely rigid. In the

initial experiments neither the pendulum nor the rails were

reinforced with dielectric structures. This resulted in

non-reproducible pendulum swings. Although the reinforcement

had a considerable stabilizing effect, the equipment was

by no means Infinitely rigid. This is how the Ampere electro-

dynamics explains why m.u was smaller than Pj,.

In conclusion, therefore, the electrodynamic impulse

pendulum invented by Pappas denies the existence of electro-

agnetic mass In the magnetic field produced by currents

flowing in metallic circuits. Ue seem to have the choice
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of believing in reactionless Lorentz forces which openly

violate Newton's third law of motion, or we have to fall

back on Ampere's force law. However, the discovery in the

niT experiment of the discrepancy between pendulum momentum

and calculated Lorentz force impulse removes the Lorentz

force alternative and leaves us only with Ampere's law as

a viable explanation of the impulse pendulum experiment.

RAIL6UN RECCUL

Ampere tension is of practical importance in technologi-

cal developments concerning exploding wires and fuses. Longi-

tudinal forces of repulsion between pieces of a substantial

conductor may be used to generate a Multiplicity of electric

arcs for limiting current and assisting in the operation

of circuit breakers and current interrupters. Prospects

are good for employing the latter force mechanism in the

design of opening-switches for discharging stores of induc-

tive energy. Pappas' experiaent with the electrodynamic

ispulse pendulum also has technological ramifications. An

important one is the recoil echaniam of railgun accelera-

tors.

The railgun is an old concept for the linear acceleration

of a metallic projectile bridging the gap between two metal-

lic rails which carry current to and from the projectile.

Sliding brush-contacts and electric arcs have been used

to transfer the current between the stationary rails and

the travelling projectile. However, the most advanced rail-

guns rely on a metal vapor arc between the rails which pushes

a dielectric projectile in front of it. This is illustrated

by fig. 37. The arc exerts an acceleration force P on a

plastic (non-conducting) projectile. In the traditional

way it would be assumed that the recoil force P is being

absorbed in the field and has no effect on the rails.
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Fig. 37 Arc-driven railgvin

A variety of different types of railguns are currently

under development. Many are directed toward military objecti-

ves. Hawke et. al. [50] have described a series of experimen-

tal shots in which projectiles ranging from 3 to 165 g mass

have been accelerated to velocities as high as 10 km/s.

In this particular investigation the greatest nomentun im-

parted to a projectile was of the order of 30 kg.m/s. If

that much nonentiim had had to be produced by electroaagnetic

energy impinging on the metal vapor arc, it would, according

to equation (2.24), have consumed 9000 HJ of stored energy.

In fact, as Hawke et. al. state, the total energy stored

in their capacitor bank was less than 0.5 HJ. There is no

doubt, therefore, that the railgun recoil is not being ex-

erted on the field or vacuum.

In light of Ampere's force law %<e must expect 0.5 ^
to be pushing each rail back to the breach of the gun. The

naximum acceleration force—and therefore the total recoil-

in the most po%rarful railguns can be as large as 250,000

N (25 ton%ifeight) and, consequently, the rails have to be

very strong in order not to buckle and restrict the progress

of the projectile ahead of the seats of the recoil forces

in the rails. Rail interference, that is a reduction in

the rail-spacing ahead of the projectile, has already been

observed by Peterson et. al. [51]. Bedford [52] discovered

that his rails had developed a permanent set, bulging outward

by as much aa 3 cm in a length of 80 cm, consistent with
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defomation by buckling. It seems, therefore, that the Ampere

recoil has serious consequences with regard to the proper

functioning of railguns, unless suitable allowances are

Made in the design of the accelerators.

The Ampere recoil [53] arises from the current element

repulsion across the comers of the railgun circuit, as

Indicated in fig. 38. The current element m of the projectile

branch P repels the current element n of rail S because

cosc-O and cos 6 is negative. The transverse component of

the repulsion of is the acceleration force ' while

the longitudinal component of the repulsion of n is the

corresponding recoil force. This holds for any current ele-

ment combination between projectile and rails. Therefore

each rail experiences a distributed recoil force of

directed toward the giin breach. It has to be remembered,

however, that this prediction of the Ampere electrodyna-

mics is for metallic rails and a metallic projectile branch

P.

I

Pig. 36 Av«re recoil foroe between a cuxrent element in

the projectile branch and another e learnt in the

rails.

In an arc-driven rallgun the element m of fig. 38 would

be a plaaaa element. It la at! 11 uncertain whether current

elamenta of arc plaaua behave exactly like metallic ale-
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ments. In a later section an experiment will be described

in which metallic current elements interact with the elements

of an underwater electric arc. In this particular experiment,

at any rate, it did appear as if the plasma element obeyed

Ampere's force law. It is far too early to consider this

an empirically established fact. In the railgun the recoil

forces should be felt by metallic elements in the rails.

For this reason, and also because no other credible recoil

mechanism has been discovered, it is very likely that the

Ampere electrodynamics governs the railgun performance.

AMPERE'S HAIRPIN EXPERIMENT

Were it not for the longitudinal forces, the Ampere-Neu-

nann electrodynamics would largely be history. It would

add nothing to the development of modem physics and techno-

logy that could not be provided by relatlvlstic electronagne-

tlsm. Experiments purporting to show the existence of longi-

tudinal Anpere forces have been known for 160 years and

fuelled a certain amount of controversy. Plany a heated argu-

ment could have been avoided had it always been recognized

that the validity of the early electrodynamics is confined

to metallic conductors. The conduction electron travelling

through the metallic lattice appears to be subject to a

ore complex force system than the free electron travelling

through vacuum, (lore than anything else. It was the discovery

of cathode rays (electron beams) which led to the demise

of Ampere's law. The predicted longitudinal forces would

simply disrupt the flow of convection currents in vacuum.

To explain the electrodynamics of isolated charges in vacuum

tubes, Lorentz really had no choice but to find a law which

did not Involve longitudinal forces. This requirement was

fulfilled by Grassmann's law (1.87).
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Long before Lorentz made the change in the 1890's. Ampere

himself appears to have been under some pressure to provide

an explicit demonstration of longitudinal forces. He had

taken the view that his empirical law was the generalization

of many experimental results, collected mainly by himself,

which all implied the existence of longitudinal forces and

no explicit demonstration was necessary. However when Ampere

visited the Swiss scientist de La Rive in Geneva in 1622.

both men performed a famous test which will be called Am-

pere's hairpin experiment to distinguish it from his many

other demonstrations. The experiment was actually designed

by de La Rive. Ampere's sketch of the apparatus in Geneva

is reproduced in fig. 40.

Fig. 40 Ampere's sketch of the hairpin experiment

ABCD is a nercury-f iiled circular dish. The liquid metal

is divided in two pools by the insulation barrier AC. Current

leads and s dip into the t%#o nercury pools. A current

source has to be connected between the terminals E and F.

In Aapere's time this current source would have been a batte-

ry of galvanic cells. An insulated copper wire npqr with

bare ends r and n, in the shape of a hairpin, floats on

the aercury with the two parallel legs np and qr straddling

the insulation barrier. The copper wire bridge pq passes

over the insulation barrier. When the teroiinals B and F

•re connected to the galvanic cells, current will flow fros

across a short distance of aercury to n, then mainly along

the copper wire from n to p over the bridge to q and back
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to r. The current Is then returned through another short

distance in mercury to the terminal sE.

Ampere and de La Rive observed that a current through

the hairpin would make it float away from the terminals

toward C. They considered this to be the proof that longitu-

dinal reaction forces existed between the short mercury

currents from m to n and from r to s, on the one hand, and

copper currents in np and qr. on the other. Ampere no doubt

realized that, according to his own law. a small transverse

repulsion force should have been exerted by the battery

circuit on the hairpin bridge. But this had to be very small

compared with th6 longitudinal repulsion forces. The hairpin

legs were made much longer than the bridge to make sure

that the transverse Ampere force on the hairpin bridge was

negligible. Grassmann proposed his law 23 years later. In

1822 the Geneva experiment was considered to be an unquali-

fied success demonstrating the existence of longitudinal

Ampere forces.

Fig. 41 MIT version of Ampere's hairpin experimei
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Figure 41 shows a diagram of the circuit with which

the author [54] in 1981 performed the hairpin experiment

at niT. The hairpin cdefg is an insulated copper conductor

with bare endfaces at c and q floating on two liquid mercury

channels ab and a'b'. When more than 200 A of current was

passed through this circuit the hairpin moved to the end

of the channels b and b*. According to Ampere's law most

of the motive force in this experiment is being provided

by the repulsion of hairpin leg cd by ct and, equally, the

repulsion of gf by gt'.

A new observation was made at MIT which was not reported

by Ampere and de La Rive, nor by anyone else who repeated

their experiment. When the forward motion of the hairpin

was blocked by placing an obstacle in the way of the hairpin

bend, strong jets of liquid mercury could be seen to emanate

from the hairpin ends c and g. The turbulence in the liquid

gave the distinct impression of the hairpin being subject

to Jet-propulsion. The area of strongest turbulence was

quite narrowly defined to the hairpin ends. It did not extend

outward to the region where the current streamline pattern

in the mercury must have shown the greatest divergence.

The jet effect becomes unmistakable at 500 A and so strong

at 1000 A that there is danger of liquid mercury splashing

out of the troughs. In 1622 Ampere and de La Rive had no

way of measuring current and the current was probably too

Mil to show the Jets.

It was further noticed at niT that some turbulence oc-

cured in the liquid mercury at its interfaces with the one-

half inch square copper bars at a and a'. This observation

became the subject of an independent investigation to be

described later. The overall turbulence in the liquid mer-

cury sections ac and a'g could be increased, at constant

current, by moving the hairpin closer to the copper bars.

At times the question has been asked: could the hairpin

propulsion be due to local heating at the sol illiquid metal
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interfaces? When dry solid conductor surfaces are brought

together the electric current is known to flow through a

few contact points. The high resistance of the narrow contact

necks causes sufficient Joule heating for the contact points

to melt and spot-we Id together. No evidence has been provided

showing the contact point mechanism to be active at a liquid-

solid conductor interface. Without it the heat generated

at the interface is quite small and incapable of producing

relative motion. Any chance of contact point formation was

eliminated in an experiment carried out by Tait [55]. He

used a 'liquid mercury hairpin' contained in a glass tube

and held there by capillary action. It was found to be pro-

pelled Just the sane as a copper hairpin with bimetallic

interfaces. Tait's experiment leaves no room for a heat

propulsion theory.

Ampere's critics of recent times have held that the

motive force on the hairpin is the Lorentz force on the

bend e of fig. 41 passing over the dielectric barrier between

the two mercury troughs. The argument of Hi lias [56] is

typical in this respect. This transverse force is also given

by the Anpere formula (1.24), but it is cancelled by longitu-

dinal reaction forces in the hairpin legs and therefore

unable to accelerate the hairpin with respect to the mercury

on which it floats. The magnetic field at the bend is prima-

rily due to the current in the hairpin legs. One might expect

that the reaction force to the Lorentz driving force should

reside in the source of this magnetic field. This is not

the case, however, because the Lorentz force on the legs

is everywhere perpendicular to the direction of relative

motion. Instead, the special theory of relativity requires

the reaction force to reside in the field and change the

omentum of electromagnetic mass, as explained in conjunction

with Pappas' electrodynamic impulse pendulum experiment.

It will now be recognized that the Pappas experiment is

yet another form of Ampere's hairpin experiment. It clearly

proves that the relativistic reaction force mechanism does
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not exist. This leaves us with the choice of accepting reac-

tionless Lorentz self-forces, which openly violate Newton's

third law. or accepting the Ampere electrodynamics. If self-

forces could really exist, they would be extremely attractive

for space propulsion as they could accelerate matter without

burning rocket fuel. The majority of scientists and engineers

appear to have no confidence In this prediction of electro-

agnetic field theory.

This is how Hillas [56] dimlsses the Jet-propulsion

observed In the HIT exerlaent:

"In the other observation cited, %^ere mercury flowed

away from the end of a stationary wire, the current

would fan out into the mercury and so exert a force

near the point of divergence, directed away from

the wire."

In other words, Hillas maintains the motion of the liquid

mercury is due to Lorentz forces on the diverging current

in the mercury without any reaction in the copper hairpin.

This conjures up a second set of self-forces. Besides, the

observed flow pattern in the mercury jets Is Inconsistent

with the Hillas explanation.

NEUHMIN'S DEHDNSTRATION OP LONGITUDINAL FORCES

The existence of longitudinal forces was fully accepted

during most of the nineteenth century. Neumann had a class-

room experiment with which he deaonstrated them routinely

to his students. Figure 42 Is a diagram of his demonstration

as recorded by one of his pupils (57).

A, B, and C are mercury troughs and D and B are copper

wire bridges from A to B and from B to C. When current is
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Pig. 42 Neumann's longitudinal force demonstration

passed along the troughs the two pieces of wire move away

from each other. They must therefore be subject to repulsion.

This experiment has at times be criticized because of the

small hooks at the ends of the wires which dip into the

liquid metal. Transverse forces on these short vertical

sections could contribute to, or cause, the longitudinal

wire repulsion. To clarify this issue the author analyzed

the conductor run ABCDEFGHKL of fig. 43 with both the Ampere

and Lorentz force formulas. The broken lines AB, EF, and

KL of this diagram represent liquid mercury connections

while the solid lines are the two wire bridges of Neumann's

experiment. For the purpose of the finite element analysis

the horizontal portions of the wire bridges were divided

into 200 current elements and the vertical dips into four

elements. The analysis did not cover the return circuit

because this is known to have little influence on the experi-

ment for the fact that both formulas are inverse square

laws.

A J
B

D G

E F
1
K L

Fig. 43 Liquid conductor portions with solid wire bridges.

Liquid portions: AB - KL - 200 elements. Solid

portions : BC - DB - FG - HK - 4 elements.

CD - GH • 200 elements.

Table 3 lists the results of these calculations. Both

formulas are seen to predict a horizontal repulsion force
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Table 3 Finite element computations for fig. 43

GRASSMANN FORMULA

Horizontal force (in dyn for 1 ab.-amp.) on:

FG GH HK FGHK

AB 53.30x10"* 0 -10.285x10-*

BC -255.98 XI
0"

0 79.011 xiO"*

CD -1531. 1*10* 0 44.241x10-*

DE 6390.4*10^ 0 -255. 98 "10-*

EF 2.9477 0 -35.991x10"*

F6 0 0 b
GH -a 0 a
HK -b 0 0

KL 74.986Kl(r» 0 -2.9493

Total

AHPERE FORMULA

AB 132.71«10-* 219.68x10-" -30.855x10-*

BC -511.87k10-« 132.71«l0-» 158.02xl0-«

CD -4.589x10-* 1,0055 132.71K10-*

DE 12.762«10-" -4.589«l(r' -511.87K10-*

EF 3.9795 1.8594 -107.96x10"^

FG 0 0 0

GH 0 0 0

HK 0 0 0

KL 224. 93*' 10-* -2.7713 -3.9840

ToUl 0.3112
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on the bridge FGHK. The Ampere repulsion is more than one

hundred times as large as the Lorentz repulsion. Furthermore,

the absolute value of the Lorentz force for currents up

to 500 A is so small that it would hardly be capable of

overcoming the strong adhesion of copper to liquid mercury.

In the description [67] of Neumann's experiment no informa-

tion has been provided of the wire diameter or the current

magnitude. It is unlikely that Neumann could have passed

more than 500 A around the circuit. For this upper bound

the horizotal Lorentz force on FGHK would only be 7.38 dyn.

The Ampere formula, on the other hand, predicts as much

as 778 dyn. Prom this evidence alone one would have to con-

clude that Neumann's experiment favors Ampere's law over

the Lorentz force law.

To eliminate the vertical hooks on the wire bridges

the author devised a modified version of Neumann's test

for longitudinal forces. The apparatus consisted of a

straight- through liquid mercury trough of 30.5 cm length

and 1.27 by 1.27 cm* square cross-sect ion. The liquid conduc-

tor was continued in both directions at the same cross-sec-

tion with 30.5 cm long copper bars. The circuit was closed

by a remote return conductor through a 500 A dc current

supply. Two Insulated copper rods AB and CD, as shown in

fig. 44, of 5 cm length and 0.3 cm diameter with bare endfaces

were laid end-to-end on the mercury surface in the middle

of the trough.

Pig. 44 Rod positions before and after passage of current
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When a current of 450 A was made to flow along the

trough, the rods would submerge and separate axial ly. As

soon as the current was switched off, ten to twenty seconds

later, the rods would surface being separated by the distance

X shown in fig. 44. Because of the 50:1 resistivity ratio

of liquid mercury to solid copper, the rods carried a sub-

stantial fraction of the total current in their section

of the trough. As they carry current in the same direction,

the copper and the mercury attract each other under the

action of transverse electrodynamic forces. These are the

same forces that cause the pinch effect. They urge the copper

rod toward the center of the mercury cross -sect ion and there-

by cause it to submerge. The distance of separation of the

rods was of the order of 2.5 cm. Ue now consider the longitu-

dinal forces that could have caused the rod separation.

Since the copper rods were coated with magnet wire

insulation, but for the endfaces, the current in them must

have been directed axiaily and all Lorentz forces acting

directly on the copper rods would have been normal to the

direction of relative motion. With no liquid metal at the

B-C interface of the two touching rods, the pinch thrust

at faces A and D should have pushed the rods together. In

the more likely event of liquid metal filling a short gap

between B and C, the pinch thrust on these faces should

have been equal and opposite to that at A and D. Either

way, pinch forces in the mercury could not explain the sepa-

ration of the rods. The Lorentz forces on the diverging

current strsamlines in the mercury (see fig. 44) could concei-

vably cause mercury circulation nsar A and D. No such circu-

lation could take place in the very short B-C gap because

there the streamlines are not diverging. Hence the initial

separation of the rods, if at all attributable to nagnetohy-

drodynaaic actions, would have had to be caused by the circu-

lations at A and 0 'pulling' the rods apart. This appears

to be a far-fetched explanation.
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Over the years there have been suggestions that heat

generated at the sol id- liquid contact faces could set up

propulsion forces. This was investigated by Tait [55] in

connection with the hairpin experiment. He obtained a nega-

tive result. Even if a thermal propulsion mechanism did

exist, it should result in symmetrically disposed opposing

forces on all rod ends and therefore be unable to produce

relative motion between the rods. Furthermore, if for some

unknown reason the thermal propulsion forces were not equal

and opposite, the motion of the rods should not stop until

they strike the ends of the trough. There appears to exist

no plausible explanation why the intensity of the thermal

action should relent as the rods separate.

ol I I I I I^ 5 10 ao 35 So «

Fig. 45 Specific rod separation force as a function of x

Figure 45 is a plot of the specific Aapere repulsion

force (F/l*) acting bet%^een the rods as a function of the

distance of separation x shown in fig. 44. The points on

this graph %Mre calculated with finite current element analy-

sis in which the rods were replaced by single filanents

of elements, the element length being equal to the rod diame-

ter. According to this graph the rods should strongly repel

each other while they are in contact, and the repulsion

force should fall off quite sharply with the distance of
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separation. For 450 A - 45 ab.-amp., the maximuin repulsion

comes to 7.5 gram-weight. This decreases to one gram at

x-2.5 cm which could well be the adhesion drag resisting

motion of the rods through the liquid mercury. Hence the

Ampere force law provides a natural explanation of the ob-

served phenomenon.

ONE OF HERING'S LONGITUDINAL FORCE EXPERIMENTS

At the turn of the century Carl Hering [58, 59) of Phila-

delphia designed, built and operated furnaces in which

liquid metal was heated by the passage of large currents

through molten pools. Electricity was only then becoming

abundant and what Hering observed could not have been seen

by the 'electricians' of the nineteenth century who forged

the Ampere-Neuvann electrodynaaics and laid the foundations

of modem electro«agnetic field theory. In the course of

his work on liquid Mtal furnaces Hering discovered the

elctroaagnetic pinch effect which plays an important role

in plasma fusion experiments. He also observed what he called

'stretch effects' which %#ere in fact the result of longitudi-

nal Ampere forces. In his widely quoted paper [58] of 1923

he writes as follows about the technological applications

of these effects:

"By passing currents, especially at high current

densities, through such very mobile conductors as

mercury or molten metals in some types of electric

fumaoes, the writer many years ago noticed the

existence of some heretofore unrecognized electromag-

netic forces which tended to move the conductors,

and being mobile liquids they responded much more

readily to such forces than solid conductors do.

Some of these new forces were very formidable, for

like most of such forces, they presumably Increase
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with the square of the current. The writer then
made use of them in electric furnaces (to pump liquid

metal), many of which are in daily use, these new
forces being the absolutely essential factor, showing

their industrial importance.

Arcs also respond readily to some of these for-

ces.
"

If the last sentence turns out to be true it will have

stunning consequences in the development of fusion power,

one of the greatest technological challenges of our time.

Several investigators [46, 60, 61] have already claimed

the painfully slow progress made to generate at least as

nuch controlled fusion energy as is being expended in pro-

ducing the plasma (break-even point) may well be due to

longitudinal forces disrupting the cxirrent-carrying plasma.

Here is Aspden's statement:

"What is the most urgent and most important technolo-

gical problem of our time? Fusion power. Our attempts

to emulate the energy generation processes of the

sun by triggering fusion in heavy isotopes of hydro-

gen Early efforts concentrated on techniques of

magnetic confinement by which energy was concentrated

to a critical level required for the nuclear reac-

tion. All these efforts have been thwarted by insta-

bilities of the electrical arc discharge which should

self-pinch to concentrate the energy and impart

this energy to the ions of the fusion process. This

whole process is concerned with the transfer of

energy from electrons to ions. Interactions between

charged particles of different charge/mass ratio

are vital to this fusion process. Yet .
if we have

inadequate understanding of the electrodynamic laws,

a. .uggested in this work, is it surprising that

progress has been retarded?"
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Returning to liquid metals, in his quotation Hering

refered to the invention of the first electromagnetic liquid

metal pump. As the metal was driven by longitudinal forces,

the Hering pump did not require external magnet coils. Now

that longitudinal forces have been forgotten, it is generally

believed that only transverse forces can pump liquid metal.

Therefore the present generation of electromagnetic liquid

metal pumps all rely on external magnets.

In discussing his experiments, Hering made no clear

distinction between the Ampere-Neumann electrodynamics and

modern field theory. This led to much confusion and, tragi-

cally, detracted from what might otherwise have become a

revival of the old electrodynamics in the 1920 's.

I iutp«fitien
I

filamcntt "S^i

^ ' s ! . H

'I

ralalhrt bmCIm KO

Pig. 46 One of Hering 's aany longitudinal force experiments

The Most decisive of Hering 's nany longitudinal force

experiMnts is illustrated in fig. 46. There ABCDBPGH is

a rectangular circuit standing in a vertical plane and having

a power supply connected in the AH branch. The current i

leaving the supply Is split at C, with 1^ passing along

the vertical branch C6 and i, conpleting the journey around
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the large rectangle. Three mercury cups B, C, and D make

it possible for the horizontal conductor section BD to move

along its length. The vertical branch CG dips into the cup

C and is restrained from moving with the cup. The weight

of the horizontal section BD. including that of the mercury

cup C, is taken up by two long insulating filaments attached

to the laboratory ceiling. With this suspension, a longitudi-

nal force of a few gram-weight can easily move BCD along

its length.
G

iidm

/

AF,

0 I

*i do

AF,m,o
Fig. 47 Dominant Ampere forces in Hering's experiment

When a current of several hundred ampere is switched

on, the mobile horizontal conductor section BCD moves vigo-

rously in the direction from D to B. Figure 47 serves to

explain how longitudinal Ampere forces account for the ob-

served relative motion. We consider the three current ele-

ments 1 i^dm, 12 dn and i.do. The interaction of elements dm

and do results in the mutual force of repulsion which

has a component in the direction of the observed relative

motion. The Interaction of elements dm and dn results in

the attraction AF^^ ^ which also has a component in the direc-

tion of relative motion. In fact every combination of one

element on the vertical branch CG and one on the horizontal
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portion BCD contributes a longitudinal force component acting

from D toward B. These are the dominant Ampere forces which

fully explain the result of Bering's experiment.

Additional longitudinal repulsion forces arise across

the two mercury cups B and D. They do not cancel each other

because i is greater than i^ • The net force from these two

sources actually opposes the relative motion once the ends

of BD have passed the midpoint in the mercury cups B and

D. A further set of disturbing forces in cups B and D are

the pinch forces which exert opposing thrusts on the ends

of the movable conductor. Since i>i2' the net longitudinal

force due to pinch is opposing the relative motion and could

not be the cause of it.

Finally we must examine the effect of the transverse

forces on the short vertical hooks dipping into the liquid

ercury at B and D. Because of the inequality of the currents

at the two ends of the movable conductor, the combined trans-

verse forces on the hooks should have a resultant in the

direction of the observed motion. This type of positive

disturbing force has already been investigated in connection

with Neumann's longitudinal force experiment and in particu-

lar with the help of fig. 43. It was then found that the

longitudinal Ampere force was more than one hundred times

as large as the disturbing Lorentz force. Furthermore, for

currents up to 500 A the absolute value of the net force

on the hooks was so small that it could not have overcome

the strong adhesion of copper to liquid mercury

•

The Hering experiment, therefore, furnishes further

evidence for the existence of longitudinal Ampere forces.

As a matter of interest it may be pointed out that the sum

of the transverse components of aF _ ^ and aF on the ele-
m^ o mf n

ment dm is equal to the longitudinal force exerted on ele-

ments do and dn. This illustrates how the Ampere forces

comply with Newton's third law. On the other hand, the Lo-

rentz force on element dm would have to have Its reaction

in the field.
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CLEVELAND'S EXPERIMENT

It took a surprisingly long time, more than fifty years,

before Grassmann's force law (1.85) was seriously criticized

for its open violation of Newton's third law which requires

that the action of one material particle, or body, on another

calls forth an equal and opposite reaction in the other.

Not until the end of the nineteenth century, when the energy

conservation principle was clearly seen to cross all fron-

tiers between scientific disciplines, was it fully appreci-

ated that the equality of action and reaction is as necessary

for electromagnetism as it was for mechanics to substantiate

the impossibility of perpetual motion. Yet criticism of

Grassmann's law, to this day, is being brushed aside with

the argument that isolated current elements of wire do not

exist and somehow nature is making sure that the net force

on a complete and isolated current circuit is precisely

zero.

This line of defense of Grassmann's law really broke

down when Lorentz equated the moving electron to a current

element because we can easily visualize two electrons, or

ions, to move in a vacuum space without being inseparable

parts of a closed circuit. The most frequently cited example

intended to dramatize the conflict with Newton's third law

is sketched in fig. 48. Electron e^ moves toward electron

while the latter crosses the path of the former. At the

instant to which the diagram applies, electron e ^ experiences

the transverse Lorentz force P due to the motion (and aagne-
L

tic field) of e^ , but the electron e^ senses no reaction

force at all. This defies energy conservation because the

electron at A can accelerate the electron at B without having

to do any work. No one appears to have invented a perpetual

motion engine which exploits this curious state of affairs,

but it caused quite a few investigators to look more closely

at the reaction forces between metallic circuit components.
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In this category Cleveland's [62] paper published in

1936 seeas to have attracted more attention than any other.

The abstract of the paper reads :

"The standard force equation (Lorentz 's), and Am-

pere's force equation for the magnetic force between

current elements, are applied to determine the forces

in a rectangular circuit, one side of which is me-

chanically separable from the other three. In order

to explain the observed forces by the use of the

standard equation, it is necessary to make the doubt-

ful assumption that part of the rectangular circuit

can lift Itself. Ampere's equation gives a reasonably

correct value of the forces without the necessity

of making this assumption.

"

The rectangular circuit to which Cleveland referred

is shown in fig. 49. He mechanically separated side AB from

A'DCB' by two mercury cups indicated on the diagram by the

liquid links LL. For the measurement of the lift force

on A'DCB' and on BA, Cleveland suspended, in turn, A'DCB'

and BA from a beam balance, making some adjustment to the

mercury cup mounting, and weighed F^^ and F2 for certain
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values of the steady current i. Not shown on fig. 49 are

a pair of closely spaced leads which bring current to the

portion of the circuit which is fixed to the laboratory

bench.

balance, team

Pig. 49 Cleveland's method of tieighing lift forces on sepa-

rable parts of a rectangular circuit

As the currents used in this Investigation were quite

small, ranging from 15 to 25 A, the measured forces came

out to only a fraction of one grftro-weight. This made the

experiment sensitive to small disturbances, as for example

the change in buoyancy in the mercury cups as a result of

Joule heating. Despite these problems Cleveland found that

P^^P^-O. No other result %M>uld have proved acceptable be-

cause, were the two forces unequal and not of opposite sign,

the circuit as a whole would have been subject to a finite

net force. It could then have been mounted eccentrically
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on a horizontal turntable to produce perpetual motion with

a persistent supercurrent.

The importance of Cleveland's investigation did not

reside in his measurements, but in the clarity with which

he explained the self-interaction force dilenuna of field

theory. Consider first the Lorentz Fj^ in the conductor por-

tion DC. The magnetic field in DC is primarily the field

of the current i approaching corner D and leaving corner

C. Now the Lorentz forces on A'D and B'C are transverse

to these sides and therefore perpendicular to P^. For this

reason Cleveland called Fj^ a self-lift. Side AB will make

a small contribution to the field in DC, but this can be

reduced to a negligible amount by increasing the length

of A'D and B'C. Very similar arguments apply to the second

case of fig. 49 where the side BA Is suspended from the beam

balance to measure ?2- This latter force Is also a self-force

and the equality of F^ and Fj appears to be a coincidence,

and not the consequence of a mathematical structure which

will prevent violations of Newton's third law under all

circumstances.

Having outlined the logistic difficulties with Lorentz

reaction forces, Cleveland proceeded to calculate F^ and

?2 with Ampere's formula (1.24). He obtained results which

were in fair agreement with his neasurements . As they had

been derived without *the doubtful assumption that part

of a macroscopic circuit can lift Itself, he concluded

that the possibility of Ampere's equation "being the correct

expression for the force between current elements seems

worthy of serious consideration".

Cleveland run up against the sane Integration singulari-

ties everyone had met when trying to calculate the reaction

forces between parts of the same circuit. To obtain finite

results, he adopted the customary procedure of eliminating

the comers of the circuit from the Integration. This made

his calculated forces approximate. Then he makes the curious
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statement concerning adjacent corner elements for

physical reasons it is known that the elements concerned

are not infinitely close together". It seems Cleveland argued

a (metallic) current element is of finite size and then

the distance between the center points of two adjacent ele-

ments can never be zero. This would be true if the metal

atom turns out to be the basic current element.

Cleveland either did not know anything about the vacuum

reaction forces required by the theory of special relativity

or he considered them to be invalid. In view of the Pappas

pendulum experiment the answer to this question is mute.

He might well have taken the view that Newton's third law

applies only to matter interactions and any theory admitting

forces on vacuum elements must lead to a non-newtonian me-

chanics. That is the case with the theory of special relati-

vity.

Cleveland did not make the point that the computed reac-

tion forces obtained with Grassmann's and Ampere's formula

lie quite close together, maybe differing by no more than

ten percent. Computer-aided finite current element analysis,

which was not available to Cleveland in 1936, reveals the

same state of affairs. The possibility still exists that

any difference is merely a computational error. It is impor-

tant to know this to understand why the two formulas have

survived for so long. Even if the difference was real, it

may be difficult to resolve it by experiment.

Although Grassmann's and Ampere's formulas predict almost

the same reaction forces between two parts of a rectangular

circuit, they decidedly disagree on how these 'reactions'

distribute themselves along the wire. In the NIT version

of the Pappas pendulum experiment it was finally shown that

only Ampere's law predicts correctly where in the conductor

portions the reaction forces attach themselves to the metal-

lic lattice.
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A.

B' A' A As

V"

Pig. 50 Vertical reaction force distribution in Cleveland's

rectanflle according to (a) Grassmann's formula

and (b) Aapere'i fonmila

Figure 50 has been drawn to show the difference in the

two vertical reaction force distributions on an exaggerated

scale. According to GrassMnn's law ail the contributions

to reside in DC and all the contributions to P2 reside

in AB. The Am>ere distribution of the Fj-force differs little

fros OrassMnn's. However there exists a large difference

in the F^-distributlons. The principal upward directed forces

In fig. 50(b) reside in the vertical legs A'D and B'C and

Bost of this force aust be visualized as being attached
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to the conductor elements closest to A" and B'. No good

way of illustrating the distribution of longitudinal reaction

forces has been found. The heavy arrows near A' and B' stand

for a string of small force contributions attached to indivi-

dual conductor elements, one at a time, tapering away from

the ends and extending right up to D and C. Despite this

graphical problem, fig. 50 shows quite clearly how the field

'pulls' A'DCB' upward while the Ampere forces 'push' up

from the bottom. The pushing action has been con finned in

the MIT experiment by the buckling of, and storing elastic

energy in, the sides A'D and B'C.

The typical amperian mechanism of producing conductor

tension is not only active in straight wires but also in

curved sections. This can be demonstrated experimentally

and theoretically with a wire semicircle which is connected

by electric arcs in air to the remainder of a capacitor

discharge circuit. First we examine the mathematical situa-

tion in conjunction with fig. 51.

AMPERE TENSION IN DIPOLE MAGNETS

A 0 B

Pig. 51 Construction for tension calculation in semicircle
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Any contribution to the semicircle tension by the inter-

action of its elements with the remainder of the circuit

will be ignored. This is likely to underestimate the Ampere

tension, but the error over the middle portion of the wire

will be quite small. The semicircle AXB of fig. 51 is divided

into z equal elements of arc, each subtending an angle of

Ae - ^/z (2.36)

The elements along XA are labelled 1, 2 m x;

and those along XB are labelled 1, 2, n, (z-x).

The distance between the two general elements m and n is

denoted by t and the arc mXn subtends the angle ^^^x\

The angles of the Ampere force law (1.24) obey the relation-

ships

a - 6 (2.37)

e • 6- «• 2a - 26 (2.38)

If R is the radius of the semicircle, then

dm - dn - (ir/z)R (2.39)

and

r» - 2R«(1 - cose_ -) (2.40)

It can easily be shown that for any oloMnt combination

on the semicircle the angle function of (1.24) Is negative

and therefore all the Ampmre Interactions to be considered

are repulsions. With equations (2.36) to (2.40) Ampere's

force law may be written

AF,yi« - (VE)«l2oosc- 3oos«( i/2)J/(2 - 2cos q (2.41)

uliere e-( v/z)(m*n-l).
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The tangential component of this repulsion produces

tension In a wire which is assumed to behave like an ideal

string with no bending strength. The transverse components

of (2.41) tend to retain the shape of the semicircle and

possibly accelerate the wire away from the center 0. Noting

that cos a-cos( c/2) , the elemental tension contribution may

therefore be written

AVn/i' - (AF„ ,^/iMcos(c/2) (2.42)

Therefore the wire tension across the perpendicular plane

containing OX is given by

X z-x
Ty/i* - I I (AFro,n/i«)cos(e/2) (2.43)

For a semicircle containing 660 elements, computer evaluation

of (2.43) gave the results plotted in fig. 52.

0 100 200 300, 400 SOD 600 660

Elcmtnl numbtr (i)
*'

Fig. 52 Computed specific Anpere tension in semicircle

The graph shows that the internally generated tension

is relatively constant from end to end of the semicircle.
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Conparing it with fig. 26 v#e see that the tension in the

senicircle is expected to be of a similar magnitude as in

the straight wire. Hence a current pulse which fractures

a straight wire should also break it after it has been bent

in a semicircle. This gave rise to the experiment depicted

in fig. 53.

Fig. 53 Pragaentation of a wire saBicircle

An 6- g F high-voltage capacitor bank was discharged

through a 1000-uH inductor to produce exponentially decaying

oscillatory current pulses up to 10 kA aaplitude and ringing

down at 2000 Hi over a period of 5 to 10 m. The discharge

currents were passed through a 1.2 diaseter, 99 percent

pure aiuBinuB wire bent into the shape of a seaicircle.

As shown in fig. 53, the wire seaicircle of 25 ce radius

was suspended in a vertical plane, leaving one centleeter

long arc gaps to connect it to the terminals of the discharge

circuit. The purpose of the arc gaps was t%#ofold. First

they allowed distortion- free thenMl expansion. Secondly,

•ssusing that an electric arc in air has no tensile strength,

they virtually eliainated the hoop tension %ihich %#ould other-

wise have been set up by the transverse Lorentz forces.



159

The following procedure was adopted. The capacitor bank

was charged to 50 kV and then discharged through the inductor

and the wire by closing a mechanical switch. This would

heat the wire but did not break it. Oscillograms of the

discharge current were recorded. They revealed the maximum

current amplitude and showed the exponential damping. After

the wire had cooled back to room temperature, the experiment

was repeated with 52 kV, and subsequently at 2 kV increments.

At 62 kV and a peak current of approximately 6000 A the

wire would fracture into two or three pieces. A certain

amount of melting could always be found on the arc gap ends

but none could be seen at the fracture faces.

After the first breaks a new semicircular wire was moun-

ted in place and the discharge experiment was repeated with

a further 2 kV voltage increment. This produced a greater

number of wire fragments. In this way the fragmentation

process could be intensified until, at 68 kV and a peak

current of 6600 A, the wire broke into 30 to 50 pieces.

A further increase in discharge current would produce visible

melting in various places along the wire, thereby destroying

the tensile fracture evidence.

The appearance of the wire fragments was similar to

those shown in fig. 31. The fracture faces were examined

with optical and electron scanning microscopes. There was

little doubt that tensile fracture had taken place in the

solid state.

Alternative tensile fracture causes, other than longiti>

dinal Ampere forces, have been discussed in conjunction

with Nasilowski's discovery of wire fragmentation (page

105). An additional consideration, arising from the semicir-

cular shape of the wire, is bending stress created by trans-

verse forces. For bending to assume significant proportions

the wire has to deform. This is largely prevented by Inertial

confineMent for the brief period in which the electromagnetic
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forces are active. But even if large bending deformations

did occur, it would still seem unlikely that the highly

ductile, 99 percent pure aluminum wire could be shattered

in many pieces. Therefore, on the basis of the present state

of knowledge, it seems more than likely that the fragmenta-

tion of semicircular wires--and indeed wires bent Into any

shape--is the result of longitudinal electrodynamic forces.

This means Ampere tension must be expected to be present

in all electromagnets employing conductors of normal metals.

So far no experiments have been carried out to check how

superconductors behave.

Ampere tension would play a minor role in solenoids

made of many turns because the hoop tension generated by

transverse forces on an individual turn, but induced by

currents in adjacent turns, %N>uld swaap the Ampere tension

in the individual turn. In this context a magnet with a

winding cross-section dimension coBparable with the perimeter

of a single turn would be teraed a solenoid. The situation

is very different in a dipole magnet in which the major

dimension of the winding cross-section is very much smaller

than the turn perimeter. To obtain an idea of the signifi-

cance of Ampere tension in dipole magnets let us analyze

a specific example.

Consider a thin circular dipole coll of square windinq

cross-section in which the center turn Is 400 times as long

as one side of the winding section. This coil may be modelled

as a single filament of 400 finite voIum elements. For

this filament the Lorentz force formula gives a transverse

force of 0.096 1' dyn on each elesnnt of arc, with the cur-

rent expressed in absolute ampere-tums. The uniform trans-

verse force distribution results In a hoop tension of 6.065

1' dyn. All this tension may be transferred to a tightly

fitting containment ring structure.

If the same calculation Is being carried out with the

Ampere foraula, the transverse foroe per current element
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comes to 0.112 dyn which results in a hoop tension of

7.076 i' dyn. Ampere tension calculations on a semicircle

of 200 elements furnished a value of 4.504 i^ dyn. This

has to be added to the hoop tension. Therefore the winding

itself, or a totally constraining ring structure, would,

according to Ampere's law, be subject to a tension of 11.58

i' dyn. This Is nearly twice as much tension as predicted

by the Lorentz force theory. Regardless of which formula

is chosen, the magnet forces are proportional to the square

of the current, or the ampere-turns, and independent of

the size of the magnet. The factor by which i* has to be

multiplied is merely a dimensionless shape constant.

To illustrate how magnet forces Increase as a result

of the greater number of ampere-turns in larger magnets,

we consider three different coil diameters of d of 1, 5,

and 10 m. Let the winding cross-section be x times x cm',

with x-100 7Td/400 cm for a single filament approximation

of 400 elements. Large superconducting dipole magnets of

10 m and greater diameter have been studied for magnetic

energy storage. Let us further assume that it Is possible

with superconductors or cryogenically cooled normal conduc-

tors to sustain a current density of 20,000 ampere-tums/cn'

over the winding cross-section. The maximum tension T pre-

dicted by Ampere's law, which a ring structure may have

to sustain under these conditions, is listed in table 4.

Table 4 Sum of Ampere and hoop tension In dipole magnet

d(cm) x(cm) i(amp-tums) T(kg-weight)

100 0.785 12,325 18

500 3.927 308,427 11,229

1000 7.854 1,233,700 179,663

The results indicate a 10,000-fold Increase in tensile force

in going from a 1 m to a 10 m diameter dipole a»gnet. Quite

a large error in the force calculation would be of little
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practical consequence to the smallest of the three magnets.

However to the largest of them the discrepancy between the

Lorentz and Ampere predictions of the containment tension

amounts to 85 ton-weight.

Before the question of longitudinal magnet forces [63]

arose, apparently only one attempt was made to measure the

electrodynamically produced tension in a wire circle. This

was an experiment by Roper [641 carried out in 1927. He

mounted a wire circle of 40.2 en centerline diameter in

a vertical plane. Copper wire of 0.294 cm diameter was used

as the conductor. Subdividing the circle horizontally into

two semicircles. Roper bridged one of the gaps by the incom-

ing flexible current leads. The other gap he closed with

a thin film of liquid mercury- The upper semicircle was

fixed to the laboratory frame, %#hile the lower semicircle

was hinged with an elastic band around the flexible current

leads and hung from a balance beaa at the mercury film end.

When passing current around Che circle, the lower half would

be urged downward, deflecting the balance beam. Weights

were added to a pan at the other and of the balance to re-

store equilibriuB.

The force F measurad in Roper's experiment is approxi-

ately half the reaction force between the two semicircles.

Using eleven different currents up to 18 ab-anp, the average

value of the shape constant by which i' (ab-anp)' has to

be multiplied to give F caae to 5.62. This indicates a total

reaction force between the two saaicircles of

2 F - 11.24 i' dyn

Single-filament finite alasent calculations provided a value

of 14.2 i' dyn. Considering that the single-fi lament approxi-

ation usually overestimates forces by 10-20 percent and

noting, also. Roper's remark about an uncertainty in the

rubber band fulcrum which might have made his Measured force

11.94 i* dyn, the agreaaant betwaan Ampere's force law and
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experiment is fair.

An important point to recognize is that a reaction force

measurement, like Roper's, does not reveal the combined

hoop and Ampere tension which a fully constraining magnet

structure would experience. His results include most of

the Ampere tension but add to it only a fraction of the

hoop tension. For example, the interaction between two ele-

ments on the same semicircle contributes to the hoop tension

in that semicircle but not to the reaction force between

the two semicircles. In a fully constraining magnet structure

the total tension would be the algebraic sum of hoop and

Ampere tension. The two components are of the same order

of magnitude. Hence if Ampere tension is ignored, magnets

nay actually operate at twice the tensile stress for which

they were designed.

Rectangular dipole magnets will also be subject to the

superposition of two tension components. They are more easily

separated than in a circular dipole magnet. Consider the

rectangular magnet coil shown in fig. 54. Let the force on

each of the short sides be F. This will create hoop tension

of F/2 in each of the long sides. Now if the coil is sup-

ported by two end plates, as sho%m in fig. 54, which are

held together by two tie rods, all the hoop tension in the

long sides of the rectangle can be transferred to the tie-

F>S2

COIL PLATE

Fig. 54 Clamped rectangular dipole magnet
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rods. A similar structure may be used for supporting the

two long sides and the hoop tension in the short sides could

then also be transferred to tie-rods. If only transverse

forces were present in the magnet coil, they could in this

way be completely taken up by lateral support plates.

The Ampere tension Tj^ in the long sides of the magnet

coil will exist in addition to the hoop tension P/2. It

will tend to stretch the long sides and if they were welded

to the parallel tie-rods, the total tension in these rods

would become

T - F/2 (2.44)

Finite element computations on rectangular circuits have

all indicated the approximation

= F/2 (2.45)

and therefore the Ampere theory predicts approximately twice

as much tension In the structure of a totally constrained

rectangular dlpole magnet than the Lorentz theory.

It will seem surprising that so large a deviation from

the Lorentz force law should not have been discovered through

force measurements or the operating experience with electro-

magnets. A few measurements of reaction forces between two

parts of a rectangular loop have been published. When inter-

preted In light of the Ampere eiectrodynasilcs, they give

only 1^ and not the sum of the two teras of equation (2.44).

At the time of writing, as far as Is kno%m« no measurement

technique has been developed that Is capable of detecting

the sum of the two terms In (2.44). Host electromagnets

la use are relatively small and have support structures

that are much stronger than they need be for force contain-

ment purposes. Only In oonneotlon with the largest magnets

•ver built and particularly In pulse current circuits could

Ampere tension have led to meohanlcal failures.
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LIQUID METAL CONDUCTORS

The simple experiment of fig. 66 is capable of showing

an effect of longitudinal conductor forces in liquid mercury.

The conductor dimensions and the current magnitude are not

critical for observing the effect. The experiment will work

equally well with direct and alternating current.

Wova pattern

1/2 inch square copper Trough Section 1/2 inch squore copper

with Liquid Mercury

-300 A

Remote return conductor with current source

Pig. 55 Straight- through liquid mercury channel

The author [43] used 0.5 inch' copper bars set in a

rectangular groove in a plastic board, part of the groove

forming the liquid mercury trough. The trough was filled

with mercury to be level with the top of the horizontal

copper bars. In this way the cross-section of the mercury

conductor was made the same as that of the copper conductors,

except for the meniscus deformation at the top mercury sur-

face caused by the surface tension of the liquid metal.

When about 300 A of current were flowing through the copper-

mercury-copper conductor, an irregular wave pattern became

apparent on the liquid mercury surface close to the inter-

faces with the copper rods. The waves disappeared almost

instantaneously when the current was switched off. The dis-

turbances were strongest right at the sol id- liquid interfaces

and they died out within a few centimeters of the interfaces.

Transverse forces should have pinched the liquid conduc-

tor equally all along its length and not create an irregular
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situation at the interfaces. No pinch deformation could

be seen anywhere on the mercury surface at the relatively

small current of 300 A. This lead to the conclusion that

the disturbances responsible for the observable surface

wave pattern were caused by longitudinal Ampere forces.

Even after recognizing these facts it remains difficult

to see how longitudinal forces can produce relative motion

between some liquid metal atoms and others, as demonstrated

by the wave pattern. Starting with the assumption that some

atoms of the liquid metal are propelled away from the solid

interfaces, it follows that others must return to take their

places, or the liquid level %K>uld continue to fall at the

interfaces, which it does not. For sooie of the atoms to

return to the interfaces, not all can experience the same

repulsion. In any case we should expect the repulsive (ten-

sile) stress to be strongest at the center of the conductor

and weakest along the comers. This will be better understood

if the liquid conductor is imagined to be resolved in a

number of equal cross-section current filaments. The center

filament will have more close-neighbor filaments than any

of the comer filaments. The tension, or interface repulsion,

in any given filament increases with the number of cooperat-

ing close-neighbor filaments. This has been shown in refe-

rence [43] and will be proved in a later section of the

book. According to the close neighbor argument it Is not

unreasonable to expect liquid to flow away from the center

of the interfaces and retum to the periphery of them.

Ue still have to explain why, in the setup of fig. 55,

the wave motion and flow is strongest at the interfaces

and disappears in the middle section of ttie liquid mercury

trough. It brings us face to face with a new magneto-hydro-

dynamics resulting from Ampere's force law (1.24). The fol-

lowing qualitative argument barely introduces this new field

of science. Bach current element (atom?) in the liquid mer-

cury is subject to two sets of forces. One set is generated
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by the far-actions of Ampere's force law. The other is due

to the hydrodynamic push from neighboring elements caused

by contact action taking place throughout the liquid. The

vectorial difference between these two sets of forces will

set the current element in motion. The motion of the element

is then governed by the inertia of the element and the vis-

cous drag on it. Superimposed on this electrodynamic picture

are the effects of gravity.

Take the horizontal midplane through the mercury trough

and let us consider only those longitudinal Ampere forces

on liquid current elements which are due to the solid copper

elements. This restricted set of far-action forces is ob-

viously strongest near the interfaces and weakest at the

midpoint of the channel. Furthermore, since they act in

opposite dlrectloris at both ends of the channel, these forces

will create hydrostatic pressure (contact action) which

is strongest in the middle of the channel and weakest near

the ends. If they were the only electrodynamic forces, they

would accelerate liquid elements along the trough center-line

and away from the interfaces. That motion would stop soiie

distance along the channel because of the opposing pressure

gradient. In fact at the outside of the channel the hydro-

static pressure would be greater than the electrodynamic

acceleration force, resulting in the return of atoms to the

interfaces. How is this picture changed by the interaction

of liquid current elements? At first sight it appears the

repulsion between liquid current elements will increase

the opposing pressure in the center of the trough more than

at the interfaces and this should further inhibit the flow

of mercury toward the midpoint of the channel and possibly

help with the return of liquid to the interfaces. It explains

qualitatively why the wave pattern on the surface of the

mercury trough of fig. 55 dies out toward the center of the

trough.

When the current in the mercury was gradually increased,

the wave notion would become more violent and extend further
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away from the interfaces. A point was reached, in the vicini-

ty of 1000 A, when an arc was struck at one end of the mercu-

ry trough or the other, with the arc separating the mercury

from the copper bar. This would interrupt the current, allow-

ing the mercury to flow back and close the gap. A little

later another arc was struck, and so on. There was no indica-

tion of the mercury level being depressed by pinch forces

prior to arcing. The arc usually ejected some mercury out

of the trough. The only explanation of this phenomena appears

to be that longitudinal Anpere forces become so strong that

they separate the nercury from the solid copper Interface.

The longitudinal separation forces should set up hydro-

static pressure in the middle portion of the trough. This

pressure might be expected to increase as the trough section

is shortened. In fact it was found that with a very short

trough of 0.4 cm length, 1000 A of dc current would suddenly

expel all the liquid mercury upward into the air. Prior

to this "explosion", the liquid metal was seen to bulge

up, as if a bubble was forming underneath, and then collapse

again. In order to escape from the trough, the mercury had

to pull a vacuum underneath it, and the bulging and retrac-

tion appeared to be the result of competing forces due to

mercury and atmospheric pressure. Electrodynamic explosions

caused by longitudinal Ampere forces have also been observed

in conjunction with underwater electric arcs.

BLBCTRODYNAHIC EXPLOSIONS IN LIQUIDS

It is generally believed that the shock wave produced

by an underwater electric arc is the result of the sudden

creation of high pressure steam in the arc column. Trans-

verse alectrodynaaic forces are either too small to cause

the shock or they are containment forces opposing the explo-

sion. Longitudinal Ampere forces, on the other hand, act

in directions in which they could promote an explosion [65].
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If a short gap between two solid conductor sections is filled

with a liquid conductor, the longitudinal repulsion of the

liquid current elements by the solid current elements will

create hydrostatic pressure in the liquid-filled gap. Pro-

vided it is sufficiently large, this pressure, when esta-

blished by a current pulse, can cause an explosion. To dis-

tinguish it from thermodynamic explosions, which rely on

the sudden creation of gas, it will be referred to as an

electrodynamic explosion. Furthermore, since liquids are

normally incompressible, electrodynamic explosions in liquids

should be expected to be more rigid, and less forgiving,

than thermodynamic explosions.

The existence of longitudinal Ampere forces in solid

and liquid metal conductors is by now well established.

These forces are certainly not found in convection currents

through vacuum. To what extent they play a part in plasma

conduction has remained an open question. The experiments

described in this section represent the beginning of a search

for longitudinal Ampere forces in plasma conductors.

Figure 56 is a diagram of experiments carried out in

a saltwater cup. An insulated copper rod, bare at the end-

face, projects through the bottom of a dielectric cup filled

with a solution of common salt (NaCl) saturated water at

room temperature. A bare copper ring electrode is immersed

in the upper part of the cup and connected to an energy

storage capacitor via an induction coil and switch. The

other end of the capacitor is connected to the copper rod.

The capacitor C is charged to the voltage Vq. When the switch

S was closed, and depending on the values of C and Vq, the

discharge through the saltwater was either silent and left

the water undisturbed or it resulted in a luminuous underwa-

ter arc in the vicinity of the endface of the copper rod.

Visible arcs were always accompanied by a snapping sound

and a shock disturbance of the liquid. With the larger dis-

charge currents a column of water was thrown up in the air
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Fig. 56 Cross-section of saltwater cup drawn to scale.

A: insulated copper rod with bare endface; B:

bare copper ring electrode: D: dielectric cup

containing saltwater: E: wooden disc float; F:

2.6 g aetal weight; L: induction coil; S: switch

in air: C: energy storage capacitor; RC: Rogowski

coil.

directly above the copper rod. The explosive nature of the

arc event could best be demonstrated by placing a wooden

float on the water surface with a 2.6 g weight resting on

top of it. Then with a silent discharge the float and weight

would reaain still while an arc would fling the metal weight

upward by as much as 20 en without spilling any water. The

float behaved as if the aechanical inpulse it was receiving

ceased as soon as the arc was extinguished. No followthrough

push free expanding staaai nor any vapor escape fron the

cup could be discerned.

The graph of fig. 57 shows the coabination of C and Vq

values chosen and indicates whether they resulted in arcs

or not. The broken line Is the approximate boundary of the

arcing regime. The number of experimental points is insuffi-
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cient to prove that this boundary is actually a straight

line. However, the decreasing voltage with increasing

capacitance C along the boundary strongly suggests that

arc formation is dependent on the total charge crossing

the water. It may be that breakdown and arcing occur only

when the number of available sodium and chlorine ions is

insufficient to discharge the capacitor.

• ARC
• MINUTE AAC
O NOARC

•(€) •
Yo(kV) d"^.
I ^ JUtaNGBOUWARY

•(bl

0.9 I 0.75 2.0—C (mF)

Fig. 57 Charging voltages and

water cup experiment,

the data for table 5.

capacitances chosen for salt-

Points (a) and (b) furnished

A remarkable feature of the experiment was that combina-

tions of C and Vq values could be chosen so that, for the

same amount of energy stored in thie capacitor, the discharge

was either silent or produced an arc explosion. Since in

those two cases approximately the same amount of energy

was being dissipated over roughly the same current path

and time, it seemed unlikely that the arc explosion was

a thermal event. The energy stored in the capacitor at the

arcing boundary of fig. 57 shows no particular trend. It

Is 6.85 J at 0.25 uF. 10.56 J at 0.5 p F, and 4.84 J at 2

u F. Points (a) and (b) on fig. 57 were chosen for further

analysis in table 5. They are both associated with a stored

energy of 9 J, but one resulted in an explosion and the
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other d i d not.

The purpose of I ho indurtdncr- i -H','f> \\ w.is to prolong

the discharge tor a more rolidblo obsor\'.uion ol t.ho curroni.

pulse decay. The saltwater resis!/inoo bcUwocn l electrodes

was small enouan to cause an undordampr^d . oscillatory dis-

charge in boin t nr- eiectrolytic and arc conduction modes,

as shown ir. i \ q '-^h

'

1

J mm

(a) Ell ecrrc lytic discharRe

(t) Arc discharge

Fig. 58 Current osci J lograms for points (a) and (b) of

fig. 57. Scales: y-7b A/cm: x-0.2 ms/cm.

Assuming the general form of the discharge current to

have been

-t/T
1 • iQe sin(^t^ 2.46

with I Q being related to tfje circuit impedance Z by

lo • ^(^2 2.47

The damping time constant I is given by
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T - 2L/R^ 2.48

where is the total resistance in the discharge circuit.

This can be split into a water and an external component

as follows

Rt - R„ Re 2.49

By discharging the capacitor first through water and then

through a short circuit across the cup, the two respective

time constants read off the current oscillograms yielded

values for and R^ which, on substitution into equation

(2.49) , gave the water resistance and therefore a measiire

of the energy dissipated as heat in the water.

An important quantity in these experiments was the i'dt

integral, that is

/i«dt - I^{ (T/4)-(1/T)/((2/T)**(2d)M} = IjT/4 2.50
0

This integral is proportional to the electrodynanic impulse

experienced by any part of the circuit. The integral of

(2.50) is known as the action integral. When it is multiplied

by R^ it gives the Joule heat dissipated in the water.

Table 5 lists the measured and derived parameters of

the experiment to which the oscillograms of fig. 58 refer.

It will be seen that capacitances and charging voltages

were chosen to give the same stored energy of 9.0 J in both

cases. Case (b) resulted in an arc explosion and (a) did

not. The heat dissipated in the water in either case came

to less than one calorie. The measurements, calculations,

and visible observations make it unlikely that case (b)

involved a thermal explosion while in case (a) there was

no hint of it. It is therefore possible and likely that

the underwater arc gave rise to electrodynamic forces which

were absent in the electrolytic conduction process.
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Table 5. neasured and derived quantities for an arc and

an arc less discharge.

(a) (b)

NO-ARC ARC

Capacitance C 0.5 uF 2.0 uF

Charging voltage Vn 6.0 kV 3.0 kV

Stored energy B 9.0 J 9.0 J

Undanped current anplltude Iq 76.8 A 93.8 A

Discharge time constant T 0.41 ms 0.28 in$

Total circuit resistance
"t

4.29 n 6.29 fl

External resistance Re 1.61 n 0.58 fl

Water resistance 2.68 n 5.71 n

Energy dissipated in water 1.70 J 3.51 J

Sone idea of the Magnitude of the forces can be gleaned

fron the fact that the explosion represented by point (c)

on fig. 57 hoisted the weight F of fig. 56 approximately 1

CB into the air. The potential energy gathered by this weight

(e.g.h) csM to 0.275 wJ. Equating this to the initial kine-

tic energy (Hw*) suggests an initial velocity of the netal

weight of Vq -0.443 a/s. Since the Mechanical impulse /F.dt

received by the weight fro« the explosion Bust have been

equal to the eoBentue (b.Vq ) iaparted to the weight, we

find that /F.dt- 1.24 eN.s. As indicated by approxieation

(2.50), this iapulse aay be equated to the product of an

average force, proportional to Ig, and one quarter of the

decay tiee constant. The discharge oscillograa of the explo-

sion provided the value of T-0.23 mm. With this figure the

average force exerted on the aetal weight by the explosion

coees to 21.6 N. This is a surprisingly large force.

Pinch forces on the current coluan directly above the

copper rod of fig. 56 would, according to a forsiula derived

by' Morthrup [44], exert an endthrust on the copper rod
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of ?^y^-(.Uq/4'^)1'q/2 (N). From the oscillogram of the discharge

current it is known that Iq -104.7 A, giving a pinch force

thrust of 0.55 mN which is far too small to have thrown

the weight 1 cm into the air. If the liquid had the rigidity

of the metal lattice, the Ampere electrodynamics would pre-

dict an up-thrust, due to repulsion from the copper rod,

of about ten times the pinch force thrust. This would still

be too small to explain the observed phenomenon. However,

in a liquid the Ampere lift forces on individual current

elements would be transmitted from molecule to molecule.

They could conceivably accumulate up to the free- liquid

surface to a value that is consistent with the observed

impulse received by the metal weight.

When Lorentz first tried to explain the electrodynamics

of convecting charges in vacuum, he found that convection

currents did not obey Ampere's force law which had proved

infallible in connection with metallic conduction. A similar

dilemma has now arisen with the saltwater experiment. The

ions in the electrolyte apK>ear to behave like convecting

charges in vacuum which almost certainly will experience

Lorentz forces but not those predicted by Ampere's law.

How Ampere forces may promote an explosion will be better

understood from a second experiment.

Figure 59 shows the details of a straight-through channel

experiment. A half- inch-wide channel was milled in a trans-

parent plastic board (A). Two copper bars of 0.5 * 0.5 in.

cross-section (B) were glued into the channel, leaving a

butt-gap of length i bet%feen then. When the gap was 0.4

cm long and filled with liquid mercury, a 1000 A dc current

was found to expel the liquid upward into the air. With

longer gaps of, say, 10 cm length no liquid expulsion took

place, but at about the 1000 A current level the liquid

%K>uld separate from one or the other copper surface, inter-

rupting the current with an arc. It %ias easy to expel salt-

water from a 1.7 cm long gap with a capacitor discharge

that created a diffuse arc over the length of the gap. Yet
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Fig. 59 Straight-through channel experinent. A: transparent

plastic board: B: 0.5x0.5 in. copper rods; D: die-

lectric block; B: liquid conductor gap; L: induction

coil; S: switch in air; C: energy storage capacitor.

electrolytic, arcless discharges through the saltwater left

the liquid still and undisturbed. When a snail dielectric

block (D) was placed over the water-filled gap, a 15 kV,

2 uF discharge would produce so strong an explosion that

the block was fired at high speed to the laboratory ceiling

and rebound to the floor.

In the aercury experlaents the current distribution

over the conductor cross-section aust have been unlfom.

In none of the experismtts was the liquid tasiperature allowed

to exceed 100*C. This was controlled by limiting the period

of current flow. The return circuit was situated far enough

away froe the liquid gap so that It could exert no' signifi-

cant electrodynaaic forces on the Mrciiry. In the channel

experiasnts the transverse pinch forces clearly act to con-

tain the explosion rather than produce It. Hence we are

left with longitudinal Aapere forces as the only plausible
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explanation of liquid mercury expulsion from short 9aps.

Ampere repulsion between in-line current elements is strong

across the sol id- liquid interfaces and can separate the

two conducting media. The longitudinal repulsion forces

also set up pressure in the middle of the gap. In short

gaps this apparently becomes strong enough to lift mercury

out of the channel. Finite element calculations have shown

that the force trying to separate liquid mercury from the

copper interfaces at 1000 A is of the order of 0.5 N. This

appears sufficient to explain the separation.

Attention is drawn to arc-generated shock waves in tolu-

ene photographed by Wong and Forster [66]. A 0.5 ca long

cylindrical arc column of 5000 A was foxind to generate a

bulging shock wave with Its leading edge traveling radially

outward halfway between parallel plate electrodes, just

as expected If longitudinal Ampere forces were driving the

shock. The shock wave was seen to collapse as soon as the

arc was extinguished. Expanding gases generated in the arc

column should have given rise to a cylindrical shock wave

which persisted after the extinction of the arc.

DO LONGITUDINAL AMPERE FORCES EXIST IN

GASEOUS ARCS AND PLASMAS ?

Aspden [60] and Pappas [46] suggested that the instabili-

ties In fusion plasmas nay also be the result of longitudinal

electrodynamic forces. If correct, this %fould be of great

Importance to the halting progress made in one of the most

exciting scientific and technological enterprises man has

embarked upon.

Nasllowskl [67] recently observed that longitudinal,

tension- like forces should tend to mechanically disrupt

arc coluns. He argued, when this occurs the driving voltage
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and the energy stored in the magnetic field of the circuit

will try and restore the current. This process should be

repetitive and cause current fluctuations in what would

nonnally beexpected to be a steady arc burning process.

In support of his views Nasilowski cites Swiss and Soviet

sources

.

Bergmann [68] writes that heavy-current arcs are accompa-

nied by continuous accoustic phenoMna, that is mechanical

disturbances in the arc plasma. Granovsky and Bykhovskaya

[69] reported the observation of spontaneous oscillations

in low-pressure arc discharges which %#ere driven by dc volt-

age. The same type of oscillation also occurs in high-pres-

sure arcs. The oscillations fall either in the HHz or GHz

band. Granovsky claimed the current fluctuations %«ere caused

in the gaseous gap of the circuit and had their seat in

the anode zone. The Swiss and Russian authors «rfere not fami-

liar with Ampere's force law and could offer no good explana-

tion of the observed arc instabilities.
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CHAI>TER 3

THEORETICAL DEVELOPMENTS

FINITE CURRENT ELEMENT ANALYSIS

Maxwell, more than anyone else, was responsible for

making the Ampere-Neumann theory obsolete, at least tempora-

rily. At the same time he was also the finest scholar of

the old electrodynamics and made a major contribution to

it in the form of the geometric-mean-distance method of

inductance calculations. This chapter will summarize the

various extensions of the Ampere-Neumann electrodynamics

made during and since the time of Maxwell. The review will

not follow the historical sequence of events but will deal

with the most significant milestone first, for it makes

it much easier to understand the rest.

This milestone was the digital computer. It makes it

possible to explore the predictions of the laws of Ampere

and Neumann to a breadth and depth that remained hidden

to the founders of newtonian electromagnetism. It is not

so much the amount of computing that becomes feasible, rather

than the avoidance of integration difficulties which, at

any rate in the field of electromechanics, reduced theories

to qualitative tools. It is more than a coincidence that,

when working with current elements of finite size, the solu-

tion process becomes easy and transparent. One quickly gains

the impression any mathematical continuum technique, which

perforce ignores the indivisibility of electrical charge

carriers, is an artifact rather than a mirror of nature.

Finite field-element analysis does not concern itself with

elements of matter and then looks like an approximation

to the truth. Finite current-elements, on the other hand.



180

are real matter elements. With them approximations arise

only from the fact that computers cannot handle the large

number of elements when each is shrunk 6ovn to its natural

atomic size.

There can be no doubt that Ampere himself believed his

electrodynamic forces acted directly on the conductor metal,

rather than on a subtile electric fluid contained in the

metal. The Ampere forces vere ponderoaotive forces, just

like the forces of gravitation. To explain electromagnetic

induction, Neumann postulated a second, and totally diffe-

rent, set of forces. He called them electromotive forces

(e.m.f.'s). The electroantive forces did not act on the

metal, but on the electric fluid contained in the conductor.

Since Neiimann's law of induction (1.68) follows directly

from Ampere's force law (1.24), it seems the same material

current elements must be involved with both sets of forces.

This fact remains to be reconciled with the modem electron

theory of metals.

Finite current eleaent analysis amy be used to calculate

both ponderomotive and electrosMtlve forces in metallic

conductors. In each case it may be aasuned the element is

a piece of metal containing a certain electric charge struc-

ture. The charge configuratlcm must permit current flow

under the influence of electrtxaotlve forces to coexist with

ponderomotive forces on the Mtal lattice. To start the

analysis it is necessary to choose an eleawnt shape and

size.

Nany aodem investigators still treat the electric cur-

rent as being infinitely divisible, as Ampere did. This

was quite acceptable in 1820 before the atomicity of matter

had become firmly rooted in our understanding of nature.

If the current eleamit Is an eiaawnt of setter, it is no

longer reasonable to aasuae it can be infinitely small.

The smallest possible current eleaant is the SMtal atom.
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including its conduction electron. In order to sustain

ponderomotive forces in the direction of current flow, the

amperian current element must involve the atomic nucleus.

The size of the atomic current element is then determined by

the spacing of atoms in the metal lattice. The shape of

the element could be unit cell of the lattice. The number

of atoms in metallic conductors is far too large to be

handled by even the most powerful computers. Therefore

we are compelled to cluster atomic current elements to form

macroscopic current elements suitable for finite element

analysis.

The infinitely small current elements proposed by Ampere

could be marshaled with the integral calculus. This turned

out to be very convenient when calculating ponderomotive

and electromotive forces between two circuits which did

not approach each other very closely. Calculating both

types of Interactions In the same circuit for just the volume

elements—as would be done in specific force

calculation— Inevitably had to deal with the interaction

of neighboring Infinitely small volumes. This gave rise

to singularities In the determination of the most important

contributions to longitudinal forces. Dealing with actual

forces, rather than specific forces, would have avoided

the problem. For this reason no longitudinal force

calculations were published In a century and a half since

Ampere's formulated his law.

The Integration singularities completely disappear when

finite current elements are employed, even if they are as

small as unit cell of the metallic lattice. This is the

primary reason why the availability of computers has led

to renewed Interest In the Ampere-Neumann electrodynamics.

The difficulties of dealing with elemental Interaction forces

In an Isolated circuit, without computers, no doubt helped

to conceal the difference between the Ampere and Lorentz

electrodynamics of metals.
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In any analysis of two circuits made of wires of a diame-

ter which is small compared to the distance between the

circuits, any kind of resolution of the circuits into a

reasonable number of elements will give about the same answer

for the mutual force or the mutual inductance. However when

the circuits nearly touch each other, the choice of current

element shape and size greatly influences the computed re-

sults. Analytical solutions do not eliminate this difficulty.

Take, for example, the mutual inductance of equal coaxial

circles as computed by Naxi^ell with elliptic integrals and

later tabulated by Grover [70]. The closest distance for

which Grover lists a mutual inductance is four percent of

the circle radius. At closer range his fomula diverges

so rapidly that interpolation becoMS Beaningless. For ex-

tremely close circles Grover recomaends a logarithmic formula

%fhich could easily arise out of finite eieaent summations.

Element shape and size selection has the greatest effect

on the calculation of selfinductances and reaction forces

between parts of the same circuit. These calculations require

the evaluation of the interaction of adjacent current ele-

ments that are 'in contact' with each other. Host investiga-

tors shunned the critical issue of element size. Let us

look at just one example. Reference [71] by Charles is a

useful paper for the computation of Lorentz forces on conduc-

tors employed by the electric power industry. This author

uses what has become known as the "stick model". He calcu-

lates the Lorentz forces between two or more straight conduc-

tor sections, or sticks, which do not touch each other.

Bach stick is treated as a single filament of current ele-

ments. Since the stick is straight, the elements within

it exert no Lorentz forces on each other Therefore forces

between neighboring elements do not enter the calculations.

It will be appreciated that the stick model will not work

with Ampere's law because of element interactions within

each stick.
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Charles devotes a paragraph to the forces at bends and

corners of a circuit. This Is where two sticks have to meet.

In this paragraph he says:

"As X (distance from corner) tends to zero the current

in the bend tapers off with a corresponding reduction

in the mechanical forces in the vicinity of the cor-

ner. The problem is outside the scope of the paper,

but an approximate solution may be obtained for a

90 degree bend by assuming that the force starts

at the point x-0.779r, where r is the radius of the

conductor.

"

Charles' little gap right where two sticks should meet sharp-

ly modifies the computed forces acting on either stick.

Cleveland [49] too was forced to resort to imaginary conduc-

tor gaps at the corners of his circuit to make his force

calculations agree with experiment.

Consider a closed circuit made up of a wire of diameter

d. For the purpose of calculating the reaction forces between

two parts of the circuit, treat the wire as a single filament

of elements. How long should the elements be? Neither Ampere

nor Neumann, or anyone else, has provided guidelines to

answer this question. With computers the author has found

that the finite current element method will yield reasonable

results only if the element length is approximately equal

to the wire diameter. In other words, the length-to-width

ratio of the current element should be unity or close to

it. If all elements are of this shape and of equal size,

then the element length is also equal to the distance between

adjacent elements. This implies that the position of an

element is given by the geometric center of the element

volume.

If a large conductor is thought of as consisting of

a bundle of filaments, circular filament cross-sections

%iould not fill the conducting area of the large conductor.
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For the subdivision of lar9e conductors into a number of

parallel filaments it is more appropriate to choose filaments

of square cross-sect ion. The requirement of unity length-to-

width ratio then makes the current element a cube. Examples

mentioned in this section will therefore be based on cubic

current elements. This means both the longitudinal and late-

ral spacing of adjacent elements will be equal to the element

length.

An experiment has been performed to check how computa-

tions with cubic current eleownts compare with measured

forces. The apparatus is shown in fig. 60. It consists of

a 100 X 30 cm rectangle made of 0.5 inch wide and 0.05 inch

thick copper strip. The ABCD plane of the circuit was mounted

vertically with the bottom side AB horizontal and hung at

0 from a balance beam. AB ««as electrically connected to

the remaining three sides of the circuit via non-metallic

cups A and B filled with liquid mercury. In each cup the

current had to cross a depth of about one millimeter of

mercury. With the conductivity ratio of copper to liquid

mercury being approximately fifty, the current was expected

to cross the liquid gap along almost straight and parallel

streamlines. Therefore the comers at A and B, as well as

those at C and D, were quite sharp* as Indicated In fig. 60.

The current was led In and out of the circuit with closely

packed parallel strips between C and D and connected to

terminals T-T.

The transverse force F on side AB acts vertically down-

ward. It was measured with a bmam balance of a sensitivity

of 0.1 gram. Stabilised DC currents up to nearly 500 A were

pasaed around the circuit and gave rise to transverse forces

on AB In the range from 10 to 25 gram. The force balance

technique Is further explained by fig. 61. This Is a simpli-

fied diagram of a oosmerclal beaa balance of unequal arms.

The ual«ht of side AB with eroury oups and support compo-

nenta will be denoted by u. This weight U, hanging on the
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Pig. 60 Reaction force measurement on 100 x 30 cm

rectangular circuit
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memr

w m (4t)

Fig. 61 Force balance

short am, was balanced with the aid of three graded weights

on a calibrated triple-slide on the long arm. The balance

condition was detected with a battery driven piezoelectric

%fhistle. hB shown in fig. 61, the iirhistle circuit was com-

pleted through a aechanical contact bet%Men the long balance

am and the Metallic support C.

Even when no current flows in the circuit, not all of

w is dead weight. A ssmII part is due to buoyancy forces

in the aercury cups. Copper has a specific gravity of 8.94

while that of liquid Bercury is 13.546. Hence the ends of

the vertical conductors dipping into the mercury push side

AB down. Slight tipping of the balance changes the immersion

depth in the cups. When this depth is decreased by one milli-

meter, U must decrease by 0.15 gran. Therefore the error

due to the tipping moveswnt of the balance leads to an under-

astlaate of the electrodynamic force F. To keep this error

small, the balance swing was llaltad to an angle just suffi-

cient to break contact at C. The positioning of the mechani-

cal stop 8, of fig. 61, restricts imswrsion level changes

to a small fraction of one BlllisMter.

Another source of error is the thensal expansion of

the 100 cm long vertical conductor portions of fig. 60. This

has been controlled to a certain extent by not allowing

the conductor teaperature to rime above 70 *C. Copper has
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a coefficient of linear thermal expansion of 16.42x10"*

The maximum thermal expansion of sides AD and BC therefore

was 0.82 mm. The effect of this expansion is to increase

the depth of immersion in the mercury cups. It counteracts

the error due to beam swinging.

The major measurement error arose from the fact that

it seemed to be impossible to obtain a clean break of contact

C for a force increment of 0.1 gram, the nominal sensitivity

of the balance. The contact resistance at C obviously depends

on contact pressure and this, in turn, determines the loud-

ness of the piezoelectric whistle. Besides, vibrations of

the laboratory floor actually lead to contact bouncing.

The stabilizing effect of buoyancy changes, and possibly

also elastic strain in the metal components, hindered clean

breaking of contact C. For these various reasons the accuracy

of the force measurements was unlikely to be better than

±0.5 gram.

Fig. 62 Measured transverse force on AS

ftoasuremant points plotted on fig. 62 were obtained by

the following procedure.

(1) With the current switched off, the sliding weights were
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adjusted until contact C was Just broken, and whistling

ceased but for an occasional light bounce, say once per

second, caused by floor-born vibrations. A check was made

that in this condition the gap at S was clearly open and

the piezoelectric whistle would not sound when connected

to S.

(2) The weights on the long beam were then adjusted to push

the beam firmly down on C, producing a loud whistle sound.

The value of the weight adjustment w (referred to the short-

am side) was noted. This operation pre-loaded the balance

negatively by w.

(3) Next a preset dc current through the rectangular circuit

was switched on for 30 seconds. If this did not Interrupt

the whistle sound, a higher current level was pre-selected

and the experiment was repeated. A note was made of the

current I which Just broke contact C according to the defini-

tion given in (1). In order to arrive at this condition

the circuit was allowed to cool down between repeated current

applications.

(4) The balance mbm then preloaded to a different value

of w and the corresponding value of I was determined by

the method of (3). The weights w i^re taken to represent

the transverse electrodynamic force F on circuit side AB.

The measurement points plotted on fig. 62 show quite

reasonable—but not perfect- -proportionality of the force

to the square of current. The slope of the broken line which

Is meant to represent the measurements, or the specific

downward force on AB of the rectsngulsr circuit of fig. 60,

was found to be 9.85.

The finite current element analysis was carried out

for two separate cases. In one of them the circuit was mo-

delled as a single filament, carrying the full current 1,

made up of 1 am long current elements. Bach element then
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Fig. 63 Current element representation

(a) single filament model

(b) 10-filament model

(c) strip of 10 filaments



ic the shape of a 0.05 inch thick. 1 cm . 0. 5 inch pUte.

^Kis made the ratio of the greatest width to element length

oximately equal to one. The other representation
is

Sketched on fig.63. It Involves the subdivision of the rect-

angular conductor strip into ten square-sect ion filaments.

Mch carrying (i/10) ab-a«P of current. Individual filaments

are then further divided into 0.05 inch long cubic current

elements. This resolved the circuit into 20,460 cubic ele-

ments compared with 260 plate elements of the single

filament model. The finer resolution of the conductor is

of course expected to give more accurate results.

Z

I

'19.64 ThTM-dlMnalonal aloMnt Interaction
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The vertical downward force on AB is mainly due to the

interaction of this side with AD and BC. The single-filament

model results in a two-dimensional problem, while the 10-

fi lament model is more complex, involving all three dimen-

sions of space. We will Immediately analyze the more diffi-

cult three-dimensional case as this also explains how to

handle a two-dimensional circuit. With respect to the 10-

filament model, let the corner A be placed at the origin

of a rectangular coordinate system, as indicated in fig. 64.

The y-coordinate labels the ten parallel filaments from

y-0 to y-9. Once the interaction of an end-filament in AD

and all filaments of AB has been calculated, the total inter-

action between the t%io sides of the rectangular circuit

nay be determined from a 10 x lO filaaent Interaction matrix.

Now consider the general element n (fig. 64) In AB which

has coordinates mCx^g , y^^, 0) and the general element n in

the first filament of AD which lies on the z-axis and has

coordinates n(0, 0, z^). The distance between those two

elements is given by

(3.1)

The required direction cosines of rg^^n are

cosa - x^r„^n (3.2)

oosB - z /r„ ^ (3.3)
n n» n

It should be noted that for interactions between sides AB

and AD the angle of Inclination of the current elements

Is c -90* and therefore cosc-0. Then from (1.24), the downward

component of the elemental Ampere force ^Fg|^„ is

(AFj^ n^v " -(i/10)'(d"> dn/xiJ n^("^°®*^ cosB)cos6

- 3(i/10)« (dm. dn/r«J n)co8a cos's (3.4)
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which can be solved by substitution of (3.1) to (3.3). Equa-

tion (3.4) has to be summed for all combinations of m and

n indicated by fig. 64. This task can only be accomplished

with a computer.

It will be realized that, if all the current would flow

in just one f ilament--say the filament coinciding with the

coordinate axes of fig. 64—the force between AD and AB would

be significantly greater than for the case where the current

is distributed over ten parallel filaments. For lack of

a better term, the reduction in force with increasing conduc-

tor cross-section will be called "force dilution".

One of the advantages of witing the equations of the

Ampere-Neumann electrodynamics in fundamental electromagnetic

units (e.m.u.) is that the force is seen to be dimensionally

equivalent to the square of a current. This is obvious from

Ampere's force law (1.24) and also equation (3.4). It means

the force equations are independent of the unit of length.

Length may be measured in meters, feet, or any other unit,

without changing the equations. Finite current element analy-

sis can be greatly simplified by making the chosen length

of current elements also the unit of length. We therefore

set

ds - dn - 1 unit of length (3.5)

Of course, in any given problem, all elements must then

be of the same length. With (3.5) the distance between two

current elements has to be expressed by a number of current

element lengths. The recurring ratio (dm.dn/rf^^i^ ) is in

any ease a dimensionless number. Hence in fundamental elec-

tromagnetic units ws amy divide the force by the square

of the current (i*) and obtain another dimensionless number

which will be referred to as the "specific force*.

The downward force on the yth fllMMnt in AB (see fig. 64)

due to the comer filament in AD is
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236 787
- 3(i/10)*y y (cosa cos'3)/r2 (3.6)

This shows that AB-30 cm has been resolved into 236 elements

and AD- 100 cm into 787 elements. Furthermore, r„ „ of (3.6)

is equal to the number of elements that can be fitted into

the distance between the general element m and the general

element n.

The interactions of all ten filaments in AD with the

ten filaments in AB can be compiled in a 10 x 10 square,

symmetrical matrix of the form

^0,0 ^1,0 ^2,0 ^,0
^0,1 ^1,1 ^2,1 ^9,1

^0,2 ^1,2 1^2,2 ^9,2

^^0,9 ''1,9 ^2,9 '9,9

The total vertical force on AB due to AD is the sua of the

elements of this matrix. Since it is syiMietrical, and the

elements along any diagonal are all equal to each other,

we find the force in question to be

Fv- 10Fo,o *18Fo,i 16Fo,2*14?0,3 -^^Fo^, MGF^
5
SFq

^
.6F^

4Fo,8*2Fo,9 (3-7)

It is convenient to solve (3.6) interms of the specific

force FQ^y/i" and then (3.7) may be %a>itten

F^/i" - 0.10Poyi« 0 I8F0 l/i' * O.I6F0

0.14Fo,3/l« 0. 12Fo O.IOFq 5/i«

0.08Fo,6/i* 0. O6F0, 7/i' 0.04Fo'3/i»

0.02Fq g/i« (3.8)



194

Equation (3.8) is a force dilution formula. It will be appre-

ciated that it also gives the force exerted by side BD,

of fig- 63, on side AB in the downward direction. This is

a result of the syametry of the rectangular circuit.

Finally we have to compute the do%mward force exerted

by CD on AB. For the wide separation between these two sides

the shape and size of current elements chosen has little

influence on the result. CD contributes less than two percent

to the downward force on AB and force dilution due to the

parallel filaments will be negligible. Hence a single-fila-

ment representation may be used for this side pair in which

each side is resolved in 30 1-cm-long plate elements. Using

this approximation, the specific downward force on AB due

to CD came to 0.1724. The total downward force on AB due

to all three remaining sides of the rectangle was found

to be

Fy/i* • 9.40

which has been plotted on the graph of fig. 62.

Pinch forces in the mercury cups should exert a downward

thrust on AB in each cup of 0.51*. The pinch force theory

supporting this claim was carried out by Northrup [44].

With pinch thrust added to the finite element calculations,

using cubic elements, the total specific downward force

on AB comes to 10.40 compared to the experimental value

of 9.65. Taking experimental uncertainties into account,

this is considered to be sufficient justification for basing

the finite element analysis on macromcoplc, cubic current

elsmenu.

With the rectangular circuit of fig. 63 being represented

by just a single filament of 1 cm long elements in the shape

of little plates, the calculated specific downward force

on AB came to
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F^i* - 11.20.

This has also been plotted on fig. 62. It clearly is an over-

estimate of the specific force even when the pinch thrust

is ignored. However, in view of the greatly reduced amount

of computation, the single filament model provides a worth-

while approximation.

The example of the rectangular circuit illustrates that

the force on part of a circuit due to the remainder of the

circuit is primarily determined by the interaction of the

circuit portion considered with elements in its neighborhood.

Remote parts of the circuit make only a small contribution,

and In many practical situations they may be safely ignored.

The strong local interactions are the result of the inverse

square law contained in Ampere's formula (1.24). The same

would be true for Lorentz force calculations, which may

also be handled by the finite current element method, because

the Inverse-square-of-distance relationship is also contained

in Grassmann's law (1.85).

Five principal rules of finite current eleaent analysis

were laid out on page 98. They vrere then applied to the

single filament model of a square circuit to explain what

is meant by Ampere tension. Ue will now delve deeper into

the subject of Ampere tension by studying a section of a

straight conductor subdivided into a number of parallel

filaments. First we ask the question: what will be the ten-

sion in t%io adjacent, straight filaments which share the

current of one absolute ampere? To obtain an answer consider

the two square-section filaments of fig. 65. They have been

subdivided into four portions a, b, c, and d. Bach portion

consists of z/2 cubic current elements with their vectors

all pointing in the same direction. Let us now determine

the specific tension T^/i* across the midplane of the fila-

ment combination when each filament carries half the total

current, or i/2. The tensile force due to the interaction

of portions a and b can be derived directly from (2.6) or
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or (2.18). An equal component will arise from the interaction

of portions c and d. Let these two components be T^^^ and

T« A' then from (2.18)

(3.9)

For the calculation of ^ and T^^^ which, because of sym-

metry, are equal to each other, %#e find from fig. 65 that

(3.10)

in 1 1 1/2

I
I :

'
I * i

(i/ll •
j

}•> (•/tl

Ii/t) m\ \m urt\

; I I i

I/I I I l/l

Pig. 65 Tension

across Bidplans of

filsMnt pair

cos c - 1

cos a • cosB • (Bi«n-l)/r_

(3.11)

(3.12)

Applying Aapere'a force law (1.24)

to portions a and d of the filament

pairj^f fig. 65 and resolving the elemen-

tal interaction force in the direction

of the current, %ie obtain

Ta.d • ^c,h

z/2 z/2

K(2cdC^-"%o«k co88)cosa (3.13)

Solving the BlBniltaneous equations

(3.10) to (3.13) by computer for a

range of z-values, and applying regres-

sion analysis to the results revealed

the logarithmic relationship

•(ll)(-1.64*ln z) (3.14)

Henoe the total tension across the aldplane of the fila-

snt oomblnstlon Is

^t' ^a,b* ^a.d' (3. 15)
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which is smaller than the force given by (2.18). This result

demonstrates that the amperian tension will be reduced if

the current divides between two adjacent filaments, and

represents what has been called force dilution.

/

/
(A)

I

I'"

i
I

fc) I I

I I

Fig. 66 Cubic element subdivision of a straight conductor

The single filament representation of a straight conduc-

tor is the crudest model one can use. Finer subdivision

of the conducting matter into smaller cubes should result

in better approximations to the specific tension. How far

must this process be driven to obtain meaningful results?

To investigate this question let every element of fig. 66(a)

be subdivided into eight smaller cubes, as shown in (b)

of the diagram. This simple subdivision multiplies the compu-

tational work by a factor of at least 64. Hence too fine

a subdivision of the conductor can be costly in computing

time. For fig. 66(b) angles a and B are no longer zero for

all relevant current element combinations and equation (3.13)

has to be used in addition to (2.6).

To obtain a quantitative indication of the magnitude

of force dilution for successively thinner filaments, let

us analyze a relatively short conductor of 2 m length and

i cm' cross-sect ion. The return circuit would make a signifi-

cant contribution to the maximum tension in this short con-

ductor, but we will not compute this. Using finite current

element analysis, the midplane tension due only to the two
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meter long straight conductor portion was found to be

Number of filaments: 1 4 9 16 25

T^/i»: 5.49 4.71 4.55 4.49 4.46

This example indicates that the computed specific Ampere

tension converges quite rapidly as the number of parallel

filaments increases. Hence a modest degree of subdivision

should give good approxlMtions.

As a final illustration of the finite current element

technique we will calculate force distributions in a railgun

circuit. The railgun is actually a rectangular circuit with

one of the short sides being Mobile. While practical railguns

are relatively long and use closely spaced rails, the wider

and shorter circuit of fig. 63 will be eaployed for calculat-

ing force distributions. Side AB will be treated as the

projectile branch p and side AC as the rail s, as shown

in fig. 67. The acceleration force of this oddly shaped rail-

gun has already been calculated and coaipared with measure-

ments in fig. 62. The recoil force in rail s is entirely

due to interactions of eleawnts of s with elements in the

projectile branch p. All tan filaaants of s have to be con-

sidered. Their y-coordinatas vary froa 0 to 9. The lengths

of p and s are 236 and 787 units, raspactlvely. In this

exaaple let i stand for the fllasMnt current, so that the

total circuit current is lOi. The specific elemental interac-

tion force between the general elaaant m on the yth filament

in s and the general aiasMnt n in the comer filament of

p on the X-axis is

Lf /i« - -(l/r« )(2oosc - 3coaacos6) (3.16)
m,n a«n

wbare r^ ^ Is the nuabar of alaaanta that can be fitted

in the distance betwssn a and n. Lat us denote the recoil

ooaponant of the eleasntal force of (3.16) by ^y,o * ^^^^
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Pig. 67 Diagram for calculating the recoil force

distribution
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cosC"0, this is given by

^Fy^O^^' • Ocos'a cos6)/r|„^n (3.17)

In the coordinate system of fig. 67 the two general elements

are situated at

and therefore

m I r. n in n

naking use of the definition of direction cosines we find

that

coso . 2n/r„^n (3-^9)

cosB • Xn^r„^n (3.20)

Coordinates x and z vary between 1 and 236 and 767, respec-

tively. This is sufficient Information to solve (3.17) for

every elenent n.

Let ^F^ 2 be the sum of the recoil forces on all ten

elements across rail s, having the same coordinate Zg,, and

caused by the ten elements across the p- branch which include

n and have the same coordinate x„. ^ arises from a 10

» 10 synmetrical interaction matrix and is numerically equal

to the 100 matrix elements . Specific forces may be substi-

tuted for actual forces to make the result more general.

The symmetry of the interaction matrix derives from

^^,0 ' -^0,y'

that is the y and x coordinates may be interchanged without

affecting the elemental forces.
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It can further be shown that the elements along any
diagonal of the matrix are equal to each other. Since the

rail current Ir-IO i, the specific force dilution formula

may then be written

AFr,z/^R- 0-^°^0,0/^ * °-18AFi^0/i| . 0. IS/^Fj^Q/i^

0.14AF3^0/^ * o/i» * O.IOAF5 o/i^

0.08AF6^0/i^ * 0 06AF7^0/i^

0.04AF8^0/ig O.O2AP9^0/i^ (3.21)

Hence the recoil force distribution is given by

236

Pr,z/« l^^^^r,z^^i (3.22)

Computer evaluation of (3.22) provided the results listed

in table 6.

Table 6. Recoil force distribution in rail s

m m

1 0.26794 20 0.04830

2 0.18224 30 0.03293

3 0.15934 50 0.01983

4 0.14353 100 0.00944

5 0.13032 150 0.00566

6 0.11893 200 0.00366

7 0.10903 300 0.00172

8 0.10037 394 0.00094

9 0.09277 500 0.00052

10 0.08608 650 0.00026

15 0.06235 787 0.00015

Sum for 787 el ennents - 4.69358
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little over 71 percent of the recoil force in one

n has its seat in the first 10 cm of the rail behind

""h projectile.
Nevertheless, a not negligible fraction

Tthe recoil is distributed over the remaining 90 an. The

^coil force distribution is of course the same in both

rails.

An equally important issue in railgun design is the

distribution of the acceleration force over the p-branch.

This distribution tends to peak at the ends of the projectile

branch The specific transverse force distribution was com-

p^t^ over the p-branch of the 10-fi lament model. As this

distribution is sy-»trical about the center line of the

railgun, only half the elements (236/2-118) have been been

listed in result table 7. This table also shows the Lorentz

force distribution for comparison. It will be noted that

the two distributions are very similar and the total trans-

verse forces differ by lees than 1.5 percent. The major

distinguishing feature is the contribution of the comer

eleiMnt. The measure of agreement between the t%#o distribu-

tions is guite remarkable.

Table 7. Transverse force distribution over p-branch

m Ampere Lorentz

1 0.37538 0.26962

2 0.23261 0.23242

3 0. 19884 0.19913

4 0.17360 0.17389

5 0.15363 0.15393

6 0. 13744 0.13774

7 0.12409 0.12438

B 0.11293 0.11322

9 0.10349 0.10379

10 0.09544 0.09574

40 0.02967 0.03000

lie 0.01637 0.01674

Totol 4.70148 4.63420
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A more uniform transverse force distribution over the

p-branch may be brought about by moving the rails closer

together. Military railguns seem to employ rail spaclngs

that are equal to the rail height. It results in what is

known as a square bore gun. The more uniform distribution

of the acceleration force is being bought at a high price.

For the same current, closely spaced rails furnish a much

smaller acceleration force than widely spaced rails. For

example, the specific acceleration force of a square bore

gun may only be two as compared to 9.4 in the circuit to

which table 7 refers.

The finite current element analysis is best suited to

electrod/nainic interactions inside and between straight

conductor portions. In bends and at comers of metallic

circuits the current distribution is generally non-uniform

and unknown. In addition, it does not seem possible to fill

circuit corners with equal -size cubic current elements with-

out producing some overlap of current elements. Experiment

indicates that the error caused by the imperfect modelling

of circuit corners can be small in a circuit like that of

fig. 63. The strip geometry ensures relatively even current

distribution and element overlap is small. However, it may

be this overlap which is responsible for the difference

between the transverse Ampere and Lorentz force on the comer

element indicated in table 7. Errors caused by imperfect

corner modelling are expected to be greater when the conduc-

tor is a round rod or of square cross-sect ion. It is hoped

that a more widespread use of the finite current element

analysis will lead to improved methods of conductor modell-

ing.

nicroscopic current elements in the form of metal atoms

do not overlap. There is plenty of space betvieen atoms to

allow for the bending of conductors. Hence the element over-

lap problem arises from the necessity of having to employ

macroscopic current elements.
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REACTION FORCES FROM THE SELFINDUCTANCE GRADIENT

The most frequently used formula for calculating the

reaction forces between two parts of a current-carrying

circuit, consisting of metallic conductors, is not the Ampere

nor the Lorentz force law. but

¥^ - slii«OL/3x) (3.23)

where ax is a virtual displacement between the two parts

of the circuit in the direction x in which F,^ is required.

The complete circuit of selfinductance L carries a current

i. Equation (3.23) is written in e.m.u. in which inductance

has the dimension of length. The positive x-direction is

the direction in which the circuit portions separate from

each other by the virtual displaceiient. The ± sign signifies

that (3.23) is soMtiMS written with the negative sign.

Whether the force represents attraction or repulsion appears

to be left to the judgeaient of the reader. In fundamental

electromagnetic units, the magnetic energy stored by the

circuit to which (3.23) refers is

E - l|i*L (3.24)

For two closed circuits and Neuaann's electrodynanic

potential (- stored Magnetic energy) is given by equation

(1.25). It involves the mutual inductance (1.26) of the

two circuits which may be viewed as a measure of the capabi-

lity of the two circuits of storing mutual magnetic energy.

By using the concept of virtual work« Neumann related the

mutual force of attraction or rapulslon of the two circuits

.by (1.27). This force may be expressed as

(Vn>x • -»/»«)(VnVn> (3.25)

yhare ^ is the mutual inductance of the cirouits.

The capability of complete circuits to store mutual
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magnetic energy must derive from their electrodynamic inter-

actions which are governed by Ampere's law (1.24). This

argument suggests that each pair of current elements stores

mutual magnetic energy in accordance with the elemental

mutual inductance of

AM - -[ (2cosc-3cosa cos6)/r ]dm.dn (3.26)
m^n in,n

If it Is known that (3.26) will be integrated around at

least one closed circuit, the angle function in (3.26) may

be replaced by cos c. This was proved by Neumann (see pages

29 to 33). Hence (3.26) is compatible with the negative

form of (1.26).

It follows logically that the selfinductance Lq q of

an isolated, closed circuit o is also composed of elemental

contributions defined by equation (3.26). In the case of

selfInductances we must not simplify the angle function

of (3.26) to cose , because the sum of the Interactions

of one element dm with all 'other' elements of the circuit

0 does not involve a closed curve integration. The selfinduc-

tance of the closed circuit o will then be given by

Lq -hi J (2cosc-3cosa cos^^/Tj^ Idm.dn (3.27)
' m n '

where m and n are sequentially numbered labels on the conduc-

tor elements of o. The angles of (3.27) are the angles of

Ampere's law as drawn in fig. 3 on page 11. The factor \

is required because the double sum of (3.27) counts every

element pair interaction twice.

Equation (3.27) is actually a single-filament formula

of selfinductance which can be solved by finite element

analysis. Let us evaluate it for a cirple of radius as

shown in fig. 68. The circle has been divided into z*\ ele-

ments of equal length which are labelled 0, 1, 2,..., n

z. Let dm be the 0-th and dn be the n-th element. Uith the
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Pig. 68 Construction for selfinductance of a circle

symbols defined in fig. 68 m let

ds - dn - R.de - [2ii/(z*l))R (3.28)

e„- n.de (3-29)

r« - 2R*(l-cose„) (3.30)

The double sun of equation (3.27) can be reduced to the

single sua

L - -H(z*l)da.dny (2cosc-3co8a co8 8)/r^ „ (3.31)
o,o m,n

because the syMwtry of the circle ensures that the inductive

interaction of da with all other elesMnts dn is the same

wherever dn is situated. In (3.31) each element pair inter-

acu twice when it should Interact only once. This is being

corrected by the factor

The relation between the angles of fig. 68 la as follows:
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^ - • n (3. 32)

Finally, the symmetry of the circle permits us to sum only

half-way around it and multiply the result by two. After

making the necessary substitutions in (3.31). the following

formula was evaluated by computer for z ranging from 300

to 20 000

2/2
q/R - '"7r'/iz*l)l

^
[3-cos(n.d5)l/;i-cos(n.d9) (3.33)

In fundamental electromagnetic units this is a dimensionless

shape constant. .
The computer results are listed in table

8. Regression analysis revealed that the figures closely

obey the logarithmic formula

I^q/R 13.56 12.63 ln(z*l) (3.34)

Table 8 L^^q/R of a circular filament

z Lo,o/R

from equ.(3.33); from equ.(3.34)

300 42. 800 42.820

400 44. 635 44.632

500 46. 054 46.038

600 47. 211 47.187

1000 50. 442 50.409

2000 54. 814 54.783

3000 57.,365 57.342

5000 60..581 60.567

10 000 64 .939 64.944

15 000 67 .489 67.504

20 000 69 .299 69.321

10^ 94.025

10'- 181.270
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This leads to the conclusion that z must not approach infini-

ty as the Ampere-Neumann electrodynamics would then become

absurd. In any case, since the forces are exerted on matter

which is not infinitely divisible, it is only reasonable

that the current element size should have a finite lower

limit. In the absence of any better information, assume

that the lower limit is the atomic spacing, or approximately

10 K. For practicle circles ranging in radius from 1 mm

to 1000 m, this implies 10' to 10'* elements per circle.

For these two extremes the respective Lq^q /R ratios listed

in table 6 %iere obtained. They are not unreasonably large.

Fig. 69 Virtual displaoenent between parts of a filament

Now that we have a Mthod of calculating the selfinduc-

tance of a closed filaaant—and this need not be a circle--%ie

return to the evaluation of the reaction force between two

parts of an arbitrarily shaped circuit o by the virtual

work equation (3.23). To do this it is necessary to determine

the selfinductance gradient along somo specified direction

X. Consider the particular exaaple of fig. 69. The current

elaasnts are labelled from 1 to g along circuit portion

I
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ABC and from g*l to g*h along the remaining circuit portion

C'DA'. The sums in the self inductance equation (3.27) have

to proceed from m-1 to m-g*h and from n-1 to n-g*h.

In a newtonian theory we expect only those elemental

interactions to contribute to the reciprocal reaction forces

in which one element lies in one portion of the closed cir-

cuit o and the other in the remaining portion. It helps

to sort the summations of the selfinductance of the circuit

of fig. 69 as follows

Lq Q--»4{[f dm*f dm)[f ( (2cose-3cosa cos 6)/rnj^n )dn-»

' m«l ro=g+l n«l

?+h
( (2cosc-3cosa cosB)/r )dn]} -

n«g+l

--Ji/V dmv [ (2cose-3cosa cosB)/r_ ^]dn
it. *. in»n
m«l n«g+l

) dm) ( (2cosc-3cosa cosB)/r„ ^Jdn
m«g+l n«l

? dm? [ (2cos€-3cosa cosB)/rj^ j^ldn

m«l n«l '

?+h q+h
dmj [ (2cose-3cosa cosB)/rj^ j^jdn) (3.35)

m-g+1 n«g+l
'

How much will the selfInductance change when the tvra

circuit portions of fig. 69 are separated by the small virtual

displacement dx? Let this change be

AL - L2 - Li (3.36)

The third and fourth terms of (3.35) are not affected by

the virtual displacement. They remain constant and, therefore,

drop out of the difference equation (3.36). It should also

be noted that the first tern of (3.35) Is equal to the second

term and the tuo terms nay conveniently be combined Into

one by dropping the factor if.

Potential energy and mutual inductance are scalar quanti-

ties. The energy storage capacitance (Inductance) does not
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change iihen the position of the t%#o conductor elements is

interchanged. Hence the first and second terms of (3.35)

are not of opposite sign. The selfinductance change for

the virtual displacement is then the difference in the limit-

ing values of the first term of (3.35), that Is

g 9+h x-Ax
(AL),(-[-I dffil ( (2co8e-3cosa cos6)/rg, „}dn] (3.37)

m»l n-g+1 ' x«0

In equation (3.37) is confined to ABC and n to C'DA' of

fig. 69. Let the distance ^ bet%feen the general elements

m and n after the virtual displacement be while before

it was r^.

1

Pig. 70 Virtual displaoaaant of the two general elements

Now consider the 2co8c-3ooea coaB angle function. Figure

70 indicates that the parallel shift of element i„dm along

the direction x leaves the angle c unchanged. Ho%#ever,ai

and become and e^- ^

a * 0 * c * 100* • constant.

Now exeaine the ohange in the product cosa cosb . Because
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of the constant sum of the two angles, we may also express

them as

a2 - - Ao
, ^2 ' ^1 *

Then

cosa^ cosB2^-cosa2 cos 62-'i[cos(aj^ -Bj^ )-cos(a2 -62 ) 1"

-S[cos(aj^- B^-cosCa^ -B^ )cos(2Aa ) -sinCa^^ -Bj^ )sin(2Aa ) ]

Therefore, in the limit in which Ax x and 0, the second

term becomes equal to the first and the last term vanishes.

Hence the change in the angle function 2cosc -3cos a cos 6

tends to zero as the virtual displacement tends to zero.

The change is, in fact, a first-order infinitely small quan-

tity, but this is sufficient for it to be negligible compared

with the other quantities of equation (3.37), that is dn.dn

and r_ which are all of finite size. It irauld, of course,
ffif n

be Insufficient in an integration over infinitely small

current elements.

To a first approximation (3.37) may, therefore, be writ-

ten as

( AL)„ -f dm? (2coac -3cos a cos B) [ (r, -r )/r r, ]dn (3. 38)
^ m-1 n-g+1 2 1 12

As will be seen from fig. 70, for a very small virtual

displacement 3x,

'1^2 ';,„

rj-rj^ - ar - ax cose (3.40)

where 6 is the angle of inclination of the x-direction to

the r -direction. Substituting equations (3.39) and (3.40)
m^ n

into (3.38) and dividing by dx gives
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3L/3x-liin (aL/Ax)

[ (2cosE-3coso cos6)/r*j j^lcosO dn (3.41)
ni«l n«g+l

'

Now consider the reaction force between the two circuit

portions in the x-direction according to Ampere's law (1.24).

It comes to

(F„ j^)^--i«? dmf I (2cose-3coso cosB)/rJj nlcose dn (3.42)
' in«l n-g+l '

By comparing this last equation with (3.41) we conclude

that the reaction force may be wltten

(F^ ) - -i«OL/3X) (3.43)

This agrees with equation (3.23) but for the factor S which

is a athamatlcal technicality of no physical consequence.

This factor could be brought into (3.42) by extending the

SUBS from to g*h and froa n-1 to g*h. Equation (3.43)

removes the uncertainty about the sign of (3.23). To be

consistent, the negative sign hes to be chosen for the vir-

tual %«ork fonnila.

The foregoing analysis indicates that, in general « a

pair of Interacting current eleawnts are associated with

a potential energy of

AP, „ • -i i„[(2oosc-3oosa cosa)/r„ Jdm.dn (3.44)

Uhen the angle function 2cosc-3ooaa cos 6 is positive, the

mutual potential energy of the two elements is of the nega-

tive variety (see pages 23 to 25). / Ar. . will then
m»n m^n

be positive and the elemental reaction force becomes

Lf^ „ - -OP. „/>r. „)m,n B,n m^n

-1 i I(2oosc-3oosa oo8e)/r* Jdm.dn (3.45)
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which is Ampere's force law (1.24).

Applying (3.44) to the circuit portions ABC and A'DC

of the circuit of fig. 69 defines the mutually stored energy

as

P - -i'? dmf ( (2cosc-3cosa cosB)/r- nJdn (3.46)
^'^ in=l n«g+l

This should be the quantity E of equation (3.24). If this

is positive energy, then the gradient ap^, ^^ix must be nega-

tive because the stored energy decreases with increasing

r. „ and the distance between each relevant pair of current
m, n
elements will be lengthened by the virtual displacement.

Alternatively, if the stored energy turns out to be of the

negative variety, 3Pg^^j^/3x must be positive. But

3P„,„/ax - (>P„,„/3r„,n)(3r„,„/»x) (3.47)

and from fig. 70 dr^ „/dx-cos6, so that
n» n

aP^ „/ax-i«? dm?
^ ((2cose-3cosa cos$)/r« „lcose dn (3.48)

m-l w-g+1

Ck>mparing this with (3.41) proves that

• l*OL/dx) (3.49)
m* n

Then, using Neumann's sign convention of the force being

given by the negative gradient of the electrodynanic poten-

tial, we arrive once more at equation (3.43) which proves

that equation (3.23) with the negative sign is compatible

and in full agreement with results that would be obtained

with Ampere's force law.

Whereas the reaction force bet%feen two parts of the

same circuit is related to the selfinductance gradient,

as shown in (3.49), the reaction force between two complete

circuits m and n is a function of the mutual inductance
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gradient contained in (3.25). This leads directly to Neu-

mann's force law (1.50). As explained on pages 46 to 48,

both the (Srassmann and Ampere laws reduce to the Neumann

formula (1.50) when computing the reaction force and its

distribution over Xmo complete circuits.

The virtual work formulas (3.25) and (3.43) are not

as useful as the fundamental force laws, because they do

not give the distribution of the reaction forces. As fig. 50

on page 154 demonstrates, this distribution can be very

different, depending on whether it has been calculated with

Grassnann's or Ampere's force law.

INDUCTTANCE CALCULATIONS

The Relationship between Self and Mutual Inductance

Selfinduction ii generally interpreted as a special

case of Butual induction with priaary and secondary circuit

erged into one conductor. This view is supported by the

fact that both quantities have the same dinension which

in e.B.u. is length. It is the natural di«ension of mutual

inductance because this paraaeter appears to depend solely

on the length and disposition of lines in space. In contrast

to this, conventional selfinductance foraulas apply to three-

diaensional conductors, neasureaents show self inductance

to be function of such non-oeo«etrical quantities as resisti-

vity, aaterial hoaogenelty, and energizing frequency.

The concepts of self and Mutual inductance arose in

the explanation of Faraday's discovery of electroMagnetic

induction. Aiipere did not take part in this effort. It was

MeuBsnn who derived the fundaaental Mutual inductance formula

(1.26), but he barely referred to selfinductance. In the

closing rwurks of his book (57] there is sMntion of the

'extracurrent* . By this he Meant the induced current arising
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from switching currents on and off in an isolated circuit

The term self inductance was probably coined by Kelvin [76]

in order to define the total inductively stored energy,

naxwell [14] greatly illuminated the meaning of the two

inductance paranetors, but his efforts in this direction

reveal a dichotony.

On the one hand Maxwell believed the magnetic manifesta-

tions of the electric current to be kinetic effects, and

on the other he developed the mean-geometric-distance method

of computing inductances which is firmly rooted in Neumann's

non-kinetic theory. To underpin his kinetic current model,

Haxwell [14] built a machine in which two flywheels, repre-

senting prinary and secondary currents, are connected through

a differential gear to a third rotating member which makes

"mutual inductance" possible. This machine is being preserved

in the Cavendish laboratory. As a result many scientists

now treat selfinductance as a kind of electrical inertia

and mutual inductance as the gearing together of selfinduc-

tances. Maxwell's GHD method is embodied in the following

treatment of selfinductance.

i

rig. 71 Wire loop in series with external e.m.f.
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Consider a wire loop as shown in fig. 63, part of which

may take the form of a coil or solenoid. The loop current

i is assumed to be driven by an externally generated e.m.f.

E. At this stage no restrictions need be placed upon the

shape or size of the loop, nor the conductor cross-section

and homogeneity, or on the rate of change of the applied

e.m.f., so long as no charge accumulation takes place any-

where along the conductor.

If R is the resistance of the loop and L its selfinduc-

tance, then the loop current i is detemined by the well-

kno%m equation

iR - E - (d/dt)(Li) (3.50)

Let us now look at two general filaaents, and n, of the

wire cross-section. All filaaents aust be thin tubes of

flow filled with conducting aatter. In fig. 71 the filanents

have square cross-sections, but any other shape could have

been chosen provided this left no eapty space between fila-

ents. According to the classical definition of a tube of

flow, its cross-sectional area may vary along Its length,

but each cross-section Bust carry the sasie current. The

current i flowing in filaaent may be calculated from

in,!^ - E - J(d/dt)(r^^„in) (3.51)

where is the resistance of the m-th filanent and is

the current in the n-th filament, while Hg^ „ is the mutual

inductance between the two general filaments. The summat£on

in (3.51) covers all possible positions n in the wire cross-

section, including that position in ««hich n coincides with

B. This ooineldenoe defines the self inductance of an indivi-

dual filMsnt as

(3.52)
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Bearing in mind that

1/R - I(l/R„) (3.53)

m n

Equation (3.51) can be solved for i^, and summing this solu-

tion for all filament currents in accordance with (3.54)

gives

i - EJ(1/R ) - «l/«Jt)I(l/R„)lM„ 1„ (3.55)

m B n

Substitution of (3.53) into (3.55) and multiplication by

R results in

IR - E - «i/dt)[J(R/RJJn^ ^i^] (3.56)

m n
'

A comparison of (3.56) with (3.50) defines the selfinductance

of the wire loop as

L • ICR/R„)Irv,„(Vi) (3.57)

m n

This Is the most general and exact expression of selfin-

ductance in terms of the filament self and mutual inductances

of which the closed circuit is composed.

The expression for L takes on a more simple form when

dealing with a wire of constant cross-section and unifora

conductivity; a wire that is also very long compared to

its croaa-sectional dimension. All filaments are then sub-

stantially of the same length and they may all be made to

have the same cross-sect ion. The resistance and current

ratios of (3.57) depend then merely on the total number

of filaments. If this number is g, %m have

(3.58)
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Equation (3.58) holds only so long as the rate of change

of the applied voltage is sufficiently small for the current

distribution over the conductor cross-section to remain

substantially constant.

With (3.58) the expression for the loop sel finductance

reduces to

L - (l/g')I IX (3.59)
m n

In this form L is seen to be the mean of all possible mutual

inductance permutations of the q filaments, including a

total of 9 combinations in uhich the positions m and n coin-

cide.

Maxwell [14] recognized that the mutual inductance of

a pair of parallel straight lines is largely a function

of the logarithm of the distance of separation d. For the

purpose of mutual inductance calculations he further assumed

that each conductor filament of finite thickness could be

represented by a line coinciding with the filament axis.

Then the average value of all the mutual inductances making

up a long, straight conductor is determined by the average

value of In d. Since there are g filaments involved, ve

have to deal with g(g-l)/2 different mutual inductances.

A geometric mean distance (GHD) d' for all the filament

combinations may now be defined by

In d' - 2/[g(g-l))[ In d (3.60)
g(g-l)/2

Onoe the GHD of the conductor cross-section has been found,

it becomes possible to equate the selfinductance of this

conductor— in accordance with (3.59)--to the mutual induc-

tance of a single pair of lines separated by d'. ftaxwell

has shown how to oompute the GHD of a variety of conductor

cross-sections. Furthermore, his GHD technique may equally

well be applied to derive the mutual Inductance of a pair
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of strai9ht and parallel conductors, each of them being

subdivided into filaments. This latter computation requires

the GPID of one conductor cross-section from the other, while

the self inductance calculations with (3.69) depend on the

geometric mean distance of an area from itself.

Maxwell [14] found the GMD's for the most useful conduc-

tor configurations by analytical means. For example, the

GND of a circular area of radius r came to 0.7788r, and

that of a square area of side 'a' to 0.44705a. The GMD of

a two-wire line is equal to the axial spacing between the

conductors. The conductors have to be round wires, rods

or tubes, but they need not be of the same diameter. In

the case of a coaxial cable in which the outer conductor

tube has an inner radius of r^^ and an outer radius of r^

the GND, d', is given by

In d' - (rjln r^^-rjln r^)/(r*-r?) - \ (3.61)

The shape and size of the inner conductor does not influence

d*. Today it is possible to calculate the GHD for any conduc-

tor shape by coaputer assisted finite element analysis,

using equation (3.60).

Maxwell's GHD method continues to be indispensable for

practical inductance calculations. It is now often forgotten

that, strictly speaking, it is valid only for very long,

straight conductors. Even in this restricted domain it in-

volves Somnerfeld's approximation. Sommerfeld [77] was the

first to solve Neumann's mutual inductance formula (1.26)

for a pair of parallel, straight filaments of finite length

L and spacing d. His result was

f\^^^ - 2{L inHL*A7T^/d] - 4.**d« d) (3.62)

When L is very much greater than d, (3.62) simplifies to

Sommerfeld' 8 approximation



220

M /(2L) = -1 ln(2L) - In d (3.63)
m, n

Only in this last approximation is the mutual inductance

per unit len9th proportional to In d, as assumed by Maxwell.

Maxwell's GND method, inter alia, ignores the self induc-

tance of the individual filaments. Applying Neumann's formula

(1.26) to tvro coinciding filaments gives an infinite result,

which must be meaningless. This is of fundamental importance

because it shows the elements of filaments used in inductance

calculations must be of finite size. It makes eminent sense

only if they are elements of matter. There is no reason

to believe that the elements of inductance calculations

are not the very sane elements %^ich have been used in the

computation of ponderomotive forces. In other words, we

are dealing once again with metal atoms. Therefore, in the

Ampere-Neumann electrodynamics. Inductance Is a property

of matter and subject to the gralnlness of matter. It must

be the metal atom which experiences both ponderomotive and

electromotive forces, and there should be a difference bet-

ween the two forces.

It has already been shown, in conjunction with equation

(3.26), that every pair of conductor elements should be

associated with an elemental mutual Inductance AM . This
n# n

is true regardless of %#hether the elements belong to two

different filaments or to the same filament. The self Induc-

tance of a closed filament is then simply the sum of all

the elemental mutual inductances of its element combinations.

This disposes of the last vestige of self inductance being

something other than mutual inductance.

There exist formulas for the calculation of the self in-

ductance of thin wire circuits. They all suggest that the

self inductance of an infinitely thin wire should be infinite

[76]. This cannot be true because it %M>uld prevent the start-

up of any current flow in metals. The oonoept of the finite-

size conductor element and equation (3.26) rMove this diffi-

culty from electromagnetic theory.



221

Inductance of Single-Filament Circuits

A filamentary circuit is taken to be a circuit in which

the conductor cross-section is so small that forces and

inductances may be calculated to adequate accuracy without

further subdivision of the conducting area. Knowledge of

the filament selfinductance is required for computing self

and mutual inductances of relatively thick conductors. Take

for example equation (3.59). The self inductance defined

by this equation depends on the sum of the elements of a

g X g mutual inductance matrix which contains the filament

selfinductances along the principal diagonal. In fact the

diagonal elements will be greater than any other element

in the natrix, which makes them particularly important when

g is small.

The selfInductance of a closed filamentary circuit has

been computed on page 205 and is given by equation (3.27).

This formula was applied to a filament circle and gave its

selfinductance, per unit radius, by a logarithmic law involv-

ing the number of elements of which the filament was con-

posed, that is (3.34). The individual conductor (filament)

element should be approximately as long as it is wide. This

rule determines z, the number of elements in the filamentary

circuit.

Self and mutual inductances, based on the elemental

mutual inductance (3.26), may be assigned to portions of

circuits without loss of physical meaning. Particularly

useful are straight- line filaments of finite length, which

can later be combined to make up complete circuits.

Let a straight filament section of length l be subdivided

into z equal -length conductor elements. Then all inductive

interaction within this section can be listed by a sysmetri-

cal, square matrix of order z x z with zeros along the prin-

cipal diagonal. The selfinductance of the filament section

is the sum of all matrix elements on one side of the princi-
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pal diagonal. According to (3.26), two similarly directed

conductor elements lying on the same straight line have

a mutual inductance of

AM - dm.dn/r (3.64)
m,n m,n

The interactions of all neighbor-element combinations

spaced dn apart will be found in the second diagonal, adja-

cent to the principal diagonal. The neighbor-pairs all have

the same mutual inductance of dm.dn/dn-dm and there exist

(z-1) of them. The third diagonal contains the mutual induc-

tances of pairs spaced two eleiBent- length apart. Their magni-

tudes are dm/2 and there are (z-2) of them. Continuing in

this way from diagonal to diagonal, the selfInductance of

the straight filament may be %iritten

L(straight) - dm.dn[(z-l)/dn*(z-2)/2dn«(z-3)/3dn« ]

z-1
- dm^ (z-z)/K (3.65)

Jf 1

Now the length t of the fllaMnt is

1- z.dm - z.dn (3.66)

so that

z-1
L(straight)/l - (l/z)I (z-x)/x (3.67)

x-1

This summing operation has been perforawd for eight values

of z from 100 to 40 000. The r««ults are reproduced In table

9 and fig. 72. As expected, they obey a logarithmic relation-

ship. Regression analysis has shown this to be

Ustraight)/! - -0.42 * In z (3.66)

Extrapolations of (3.66) to z-10* and 10*' are also noted

on table 9. For a fundamental eleaent length of 10 Angstrom,

the two large z-values correspond to conductor filaments of
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1 im and 1 km length, respectively, which comprises most

practical applications.

Table 9 Selfinductance per unit length of a straight

filament

z L(straight)/l

from (3.67) from (3.68)

100

500

1000

2000

5000

10 000

20 000

40 000

10»

10»»

4. 187

5.793

6.485

7.178

8.095

8.788

9.481

10.174

4.185

5.794

6.487

7.179

8.095

8.788

9.480

10.173

13.390

27.196

Pig. 72 Self inductance per unit length of straight filanent.

Curve froai (3.68): points from (3.67).
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If we treat a wire as a single filament, then for a

fixed length of the filament, an increase in z implies a

reduction in wire diameter. Figure 72 may therefore be used

to determine the relationship between the sel f inductance

of a straight wire and its diameter. Alternatively, if the

wire diameter is held constant, the increase in z represents

a proportional increase in wire length. The self inductance

per unit length of a given wire is seen to increase logarith-

mically with length and never tends to a limit, however

long the wire may be.

Knowledge of the selfinductance of rings, circular turns,

and helically wiound, circular solenoids is of the greatest

Inportance in Mny areas of electromagnetic engineering.

Maxwell addressed this subject with his GND technique which

has endured to this day. It is by no means perfect, nor

easy, but it was the best one could do until computers became

available. As Maxwell himself pointed out, the GND method

is rigorous only in the case of straight conductors, but

it will furnish good approximate results when the cross-sec-

tional dimension of the conductor, or the winding of a number

of turns, is small compared to the diameter of the ring

or the solenoid. Just how large the dimensional ratio must

be for the approximation to hold, HaxiMll did not specify.

To examine this last point compare the mutual induc-

tance of a pair of straight, parallel filaments with that

of a pair of coaxial, circular filaments, the two pairs

having the same length and spacing, as indicated in fig. 73.

The mutual inductance of the straight filament pair, Hg,

is given by Sommerfeld's equation (3.62) and approximation

(3.63). It was Maxwell who solved Neumann's mutual inductance

formula (1.26) for two coaxial circles of radius r^ and

r^ and a separation d bet%ieen the planes of the circles.

The solution takes the form

(2/k)E) (3.69)
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Pig. 73 Conparison of the mutual inductance of a pair of

straight with a pair of circular filaments of the

same length and spacing

where K and E are conplete elliptic integrals of the first

and second kind, of nodulus k. The Modulus of the elliptic

Integrals is

k - 4r^r2/((r^T2)« d« ] (3 70)

Tables of elliptic integrals are readily available but

interpolation between tabulated values is frequently inade-

quate. Grover (70) reports that no less than 100 series

expansions and other fonaulas have been published to overcome

this interpolation difficulty. For circles very close toge-

ther Orover cites a lorarithmlc relationship corresponding

to

V^2»r) . Int4(r/d)«*ll - 1.2275 ^^
''^^

figure 74 has b—n constructed for the computation of
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the mutual inductance of two equal, coaxial filament circles

by the finite element method. Each circle is divided into

z equal arc-elements numbered from 0 to z-l. The element

dm is held fixed in position m-0, while dn is taken around

the circle n. Any individual position of dn is described

in terms of the angle c , which is related to n by

c- 360 n/z (degrees) (3.72)

The conductor element length is best written in terms of

the radius r

dm • dn - 2ffr/z (3.73)

The distance between dm and dn can then be shown to be

« r /d;rJ**Jl 1-^651 JbUn/Z) J (3.74)

Therefore, with (3.26), the mutual inductance between dm

and the whole of the circle is

z-l
dm J (cosc/r^ )dn (3.75)

This quantity would be same regardless where dm is situated

on the circle m. Hence the mutual inductance between the

two filament circles is simply z times (3.75). Substituting

appropriately for the various parameters, this result is

expressed by

z-1
M^-4ir'(r/z) 7 cos(360n/z)/ ^Id^rJ* -^l 1-WS( JbUH/ 2) I (3.76)

n"0

Equation (3.76) tends to a finite limit as z is increased

and fortunately it reaches this limit quite quickly unless

the circles are extremely close together. Table 10 shows

this convergence for two d/r ratios.
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Fig. 74 Construction for the solution of (3.7^)

Table 10 Convergence of the nutual inductance of coaxial

fllaMnt circles (r-1 cm)

d/r-1 d/r-1/20

z z

2 10.9116 20 53.4477

4 5.4558 50 40.3413

6 4.9999 100 38.7651

8 4.9482 200 38.6721

10 4.9417 300 38.6717

20 4.9408 400 38.6717

30 4.9408 500 38.6717

40 4.9408

50 4.9408

The data plotted on fig. 75 co«pares the mutual inductance

per unit length of a pair of parallel, straight filaaents
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(curve 1) with the mutual inductance per unit length of

a pair of filament circles of the same length as the straight

filaments. Curve 2 for the filament circles indicates excel-

lent agreement of the finite element formula (3.76) with

Grover's logarithmic formula (3.71).

Pig. 75 Mutual inductance per unit length of (1) parallel,

straight filaMnts by (3.62); (2) coaxial filament

circles by (3.71), points from (3.76); (3) coaxial

filament circles by (3.69), k given to three signi-

ficant figures.

Interpolation froa tables of elliptic Integrals for

nax%#ell's solution (3.69) predicts lower Inductance values

for the filament circles. Nevertheless, as curve 3 of fig. 75

Indicates, the Haxuell solution is a reasonable approximation

to (3.71) and (3.76). A regression analysis of the computer

data obtained with (3.76) for the Interval 10 ^ r/d < 100

produced the following logarithmic fomula of the finite

eleaent analysis
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l\./(2iTr) - 0.18 1.99 ln(r/d) (3.77)

When substituting numerical values into (3.71) and (3.77)

it will be found that these two logarithmic formulas are

almost identical.

Let us return to the question of the value of r/d at

which the GND method applied to filament circles becomes

unreliable? First of all it should be noted on fig. 75 that

up to r/d«100 the mutual inductance per unit length of two

circles differs appreciably from that of straight filaments.

The percentage gap beti^en the two quantities decreases

as r/d becones larger. For d-10~^ cm (i.e. atomic spacing)

and 2nr«100 cm It is down to eight percent. In view of this

finding. It seeiu unrealistic to assume, as Naxwell did,

that the tvo quantities can be equated to each other. Here

it must be remembered that Maxwell did not have the benefit

of knowing gu—urfeld's formula (3.62). For very large r/d

ratios both the elliptic integral and the finite element

solutions agree with (3.77), and then the GHD method may

be applied to circular conductors. Therefore the selfinduc-

tance of a circular ring made, for example, of a round wire

of radius 'a' may be computed with (3.77) so long as the

GHD of the wire cross-section (-0.7788a) is substituted

for d.

Hpw large must r/GHD be for this approximation to hold?

It certainly %iould not hold when r-GHD-l cm, for (3.77)

would then give a mutual inductance of 1.13 cm while the

finite element method (table 10) indicates a value of 4.94

cm. But as fig. 75 indicates, for r/d-10 agreement becomes

more reasonable. It is therefore suggested that the GHD

method applied to circular conductors cannot be relied upon

unless the r/GHD ratio is at least ten.

The finite element method of computing the selfinductance

of an isolated conductor filament may be applied to any

circuit geoswtry. (Computation times strongly depend on cir-



230

cult symmetry. To show some of the complexity that may arise,

the filament square of fig. 76 will be taken as the final

example. The sides of the square have been labelled (1)

to (4) and each is divided into z equal -length conductor

elements, so that the length of one side is given by

a - z.dm - z.dn (3.78)

Element dm successively occupies positions 1 to z/2 along

side (1). The inductance contributions from the remaining

positions of dm may be deduced from the symmetry of the

square. In fact the elemental inductance matrix will be

of the order of 4z x 4z. The mutual inductance of each ele-

ment pair is listed twice on this matrix but makes only

one contribution to the filament selfInductance. Hence just

the 6z'-z/2 matrix eleaents to one side of the principal

diagonal need be sumned. Now if dm moves from 1 to (z/2}

on side <1) while dn travels around the whole square, 4z.z/2-

2z< positions in the inductance matrix will be filled. A

similar area of the mat>ix will be covered if dm iBoves from

iz/2)*\ to z, and the sum of the respective elements will

be identical to that obtained in the first operation. By

repeating the process for dm on the remaining three sides,

the whole of the inductance matrix may be filled. Therefore

sysmetry permits us to write

z/2 z
L(square) - (8/2)J dmf { CF(o.6'C )dn/r„^n ^Sl

*

m"l n*l

[F(a,6.c)dn/r^,„)s2 *

•[F(a,B.c)dn/r, „lg3

MF(o,e'c)<in/r^^„lg4) (3.79)

where SI stands for side (1) and so on. With the construction

of fig. 76 the individual terms of the n-sum of (3.79) are

seen to be
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dm

I

(D

Pig. 76 Construction for filaaent square

(F(o,B,c)dn/r„,nlsi - l/|m-n| iw^n) (3.80)

(P(a,B,c)dn/r 1 -3(z*H-«)(n-H)/[(2*H-«)»*(n->l)Ml-5 (3.81)

m, n

[P(a« ,e )dn/r^^„ -l/t (m-n)' ^z'l .3(«-n)'/[(»-n)' ^z'

)

(3.82)

(F(a,B.c)dn/r„ ^ ). . OC-H) (n-»i)/( (--ti)' *(n-H)M^-^ (3-83)

Finally. since d«-a/z. the d linens ionleas self inductance

P«r unit periphery of the square becoees

1.5
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L(square)/(4a) -

1.5

3(n>-H)(n-»i)/((in-H)»*(n>H)' ]

1.5

(3.84)

Equation (3.64) has been solved by computer for five values

of z from 6 to 60. The results are listed in table 11. As

in previous examples, the filament selfinductance per unit

length again obeyed a logarithmic relationship. For the

square this was found to be

L(square)/(4a) - 2.36 In z (3.65)

The extant of the agreement between (3.84) and (3.65) is

also indicated in table 11.

Table 11 Selfinductance per unit length of a filament

square

L(square)/(4a)

z by (3.64) by (3.65)

6 4.0711 4.0643

20 5.1572 5.1960

5.647540 5.6247

60 6.2049

6.5050

6.2267

60 6.4991

10*

10>2

15.3666

26.3532
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Inductance of Straight Conductors and Cables

Circuit self and mutual inductances are useful only

If the current distribution over the conducting cross-section

is uniform, or approximately so. Approxiamte uniform current

distribution always applies to circuits of so small a cross-

section that they may be safely treated as single filaments.

It has been the major reason for developing and employing

single-filament formulas.

One cause of the non-uniform current distribution in

a homogeneous conductor are differences in filament length

that arise, for example, in solenoids and all curved conduc-

tor sections. The second cause of current concentrations

in certain parts of the conductor cross-section are skin

effect phenomena due to the flow of alternating or pulse

currents. As the inductance of an ac or pulse current circuit

is responsible for the Induced back e.n. f. generated by

the time-varying current, it turns out that no adequate

inductance foraulas are available for precisely the cases

where Inductance is of greatest importance.

However there Is some Interest in the inductance of

straight conductors which are too large to be treated as

single filaments and carry dc or low- frequency ac currents

that do not significantly disturb the unifonslty of current

distribution. This applies to many power conductors used

for the transmission and distribution of electricity. In

these cases the computed circuit inductance may be required

for reactance calculations, or the determination of magneti-

cally stored energy and electrodynamic forces derived froa

the energy via the virtual work concept.

Although a straight conductor of finite length does

not form a closed circuit, in the Ampere-Neumann electrodyna-

Ics it is permissible and expedient to associate it with

force, inductance, and stored energy. The selfInductance

of a homogeneous, finite- length, straight conductor Is given
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by equation (3.59). This last expression implies that each

place in the square matrix of the filament mutual inductances

contains a number, and therefore each mutual inductance

appears twice in the double summation, once on either side

of the principal diagonal. Hence the sal f inductance of a

homogeneous, straight conductor is simply the average of

the mutual inductances of the filament pairs and the self in-

ductances of individual filaments.

It is convenient to vork with filament self and mutual

inductances per unit length. Equation (3.68) is the appropri-

ate formula for the selfInductance. To comply with the rules

of finite element analysis, the nunber of elements in each

filament must be

z - i/dm - i/dn (3.86)

SoMmerfeld's solution (3.62) should be used for the filament

mutual inductances. Per unit length, this takes the form

"m,x/* - 2{ln(Cl/d)*/l*(l/d)«)-*^l*«l/ )«*d/l} (3.87)

Fig. 77 Squaro-smctlon conductor r«soived into filaments



236

The amount of computation involved in determining the

selfinductance of a straight conductor by (3.59) depends,

of course, on the total number of filaments q into which

the conductor is resolved. Surprisingly, a relatively small

number of filaments gives a quite accurate result. This

will be illustrated with the 10 x 10 cm square-section con-

ductor of fig. 77 which is 1 km long and has been subdivided

into g square-section filaments. Computer results for this

arrangement are listed in table 12 for g varying between

100 and 10,000. It will be seen that multiplication of the

number of filaments by a factor of 100 adjusts the L/l value

by only 1.5 percent. Hence, at least in this particular

example, 100 filanents give a fairly accurate result.

Table 12 Selfinductance per unit length of a 1 km long

straight conductor of 10 x 10 cm square cross-

section

g L/l

100 19.7215

400 19.4899

900 19.4466

2500 19.4281

10 000 19.4198

It ehould be observed that the selfinductance per unit

length of a 1 kn long, straight fllaMnt (z-10^') is 27.196.

The selfinductance per unit length of the 10 x 10 ca conduc-

tor is significantly smaller. Bven though the length-to-

width ratio of this conductor is 10,000, it cannot be ade-

quately represented by a single filament. It should also

be noted that resolution into too small a number of filaments

will overestiaate the selfinductance. The data of table

12 does not obey a logarithmic law. Therefore L/i for the

smallest possible filament cross-section cannot be computed.

Ho%fever the trend of the data of table 12 suggests that

it would not differ much from 19.4.
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The geometric mean distance (GMD) of a square area of

side 'a' is 0.44705a. Equating this to d in equation (3.87)

makes the selfinductance per unit length of the 10 x 10

cm square conductor of 1 km length equal to 19.4172. This

is remarkably close to the value listed in table 12 for

g- 10, 000. It is likely to be the limiting value when the

filament subdivision is driven to the atomic limit. The

GND method represents by far the easiest way of calculating

the selfinductance of a straight conductor when the GMD

of the conductor cross-section is known. For any other con-

ductor shape the finite element analysis illustrated by

fig. 77 may be used with confidence.

The equivalence of the GHD and finite element techniques

ay also be shown as follows. When d/£<<l, the non-logarlth-

Ic part of (3.67) Is very nearly equal to -1 and constant,

that Is Independent of the actual length of the conductor.

Sonnerfeld's solution (3.87) for this case reduces to the

approxlMtlon

M„ j^/t « 2(-l In 2 In t - In d) (3.88)

Since the selfinductance Is equal to the average mutual

inductance of the filsMnt coabinatlons, ve may t#rlte

J-/^ • n/*)iiv - -2 21n 2 21nl 2(ln d).„ (3.89)
IB/ n aV SV

krhere (In d)^^ is the average value of In d. This may be

equated to

(In d)^^ - ln((») (3.90)

The So—erfeld approxlMtion (3.68) Is not valid when

d/t cannot be Ignored ooapared to 1. In such cases the ave-

rage Mutual inductance has to be detemlned by the auch

longer finite elaaent process. To obtain an idea over what

range of d/i approxlaation (3.68) May not be adequate, the

logarithBlc part (A) and the reaalnder (B) of (3.87) have
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have been computed with d/i ranging from 1 to 10"*
.

In this particular case.

It seems. Sommerfeld ' s approximation becomes unreliable

when d/l> 10"'. As a rule of thujnb. therefore, the GMD method

should not be used unless the conductor is more than 100

times as long as it is wide.

A straight conductor arrangement of great practical

import is the parallel go-and-return circuit. When the dis-

tance between the conductors is less than one percent of

their length, the end connections closing the circuit have

little effect on the total inductance and they may be ig-

nored. While studying the self inductance of a single conduc-

tor, the direction of current flow was of no consequence,

so long as it was the same in each conductor element. This

is not the case in the go-and-return circuit. It has to

be remembered that Sommerfeld's solution (3.62) or (3.87)

of Neumann's mutual inductance formula (1.26) assumes that

dm and dn point in the same direction. If one of them is

reversed, cose of every element combination changes from

*1 to -1 and (3.62) and (3.67) change sign.

Pig. 78 Filament model of a symmetrical, straight go-and-

return circuit
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Consider the go-and-return circuit of fig. 78. Each of

the two conductors is of the same uniform cross-section

and made of the same homogeneous conductor material. In

this symmetrical situation it is convenient to subdivide

each conductor into the same number of equal -area filaments.

Figure 79 is the concomitant 2g x 2g mutual inductance matrix

with each filament sel f inductance doubled. In this particular

form of the matrix, each real inductance appears twice and

the sum of all real inductances is half the sum of the ele-

ments in the matrix.

9

1*1

Ml

•f 0)

[13 cm
cm

•
•
•
•
•
•
• f

•
•
•
•

B ::]
fa

Tin n n
•
•
•

•
•
•
•

HIS L

Pig. 79 Mutual inductance matrix of symmetrical, straight

go-and-retum circuit
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The energy stored by any pair of filaments m and n is

where the filament current is defined by

i^ - Ig/g - ij^/g (3.92)

If the subscript G-R stands for the complete go-and-retum

circuit, the total stored energy may be written

ID n

The double sumation of (3.93) must comprise all the elements

of the matrix of fig. 79. According to (3.92) and (3.93)

the selfinductance of the go-and-retum circuit is

Ife . - (l/g«)I in (3.94)"B-R ^ J m,n

The matrix of fig. 79 may be partitioned into four quarters,

and with these partial matrixes equation (3.94) may be split

into

?g g 29 29 g 2g 2g

B-1 n-1 m-l n-9+1 ' m-g+l n-1 m-g+l

(3.95)

It will be recognised that the first tere of (3.95) Is the

selfinductance of the conductor G and the last tern is

. The middle terms are equal to each other and represent

the Butual inductance bettMen 0 and R. Hence (3.95) is equi-

valent to

An equation like (3.96) applies to any go-and-retum circuit,

regardlees of ayesMtry. If each conductor la resolved into
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a different number of filaments, then the mutual inductance

matrix corresponding to that of fig. 79 has to be partitioned

into two squares of different size and two rectangles. The

same method may be applied to the three conductors of a

three-phase power transmission circuit [79). Equation (3.96)

is particularly useful when the circuit is long compared

with the distance between the conductors so that the 6ND

method may be used for determining L^, Lj^, and ^^ p.

By way of an example, take two round conductors of radius

r and separated from each other by the axial spacing d.

The GHD of the circular area is 0.7768r and the GMD between

two circular areas is equal to the axial spacing d. Then

with SoHwrfeld's approxlaation and (3.96) we obtain

Lc.R/t-4[-l*ln 2*lni -ln(0.7788r))-4C-l*ln 2*lnt -In d]

- 4 ln[d/(0.77B8r)) (3.97)

The selfinductance formila noraally quoted for parallel

wire lines agrees with (3.97) except that soaetiees the

logaritha Is approxiaated to ln(d/r). In the development

of (3.97) it becoees clear %#hy the selfInductance per unit

length of a go-and-retum circuit does not depend logarith-

mically on circuit length. The In i terms cancel. The self in-

ductance per unit length of an Isolated, straight conductor

is length-dependent, as can be seen fro* equation (3.69).

Maxwell [14] derived a useful theoresi relating to the

OHD between two areas A and X, lihen X can be split up in

subareas X^, K^, Xy ... X^ , in such a way that the GHD's

between A and the subareas are kno%m to be x^, Xj, x^, ...

x^. The theor«« states that the OHD between A and X is

ln(aHD)-(X^ln x^^X^ln Xj^Xjln X3*...*X„ln x^)/X (3.96)

where X - X^ « Xj * X3* . . .

«

(3.99)
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TRANSIENT AND ALTERNATING CURRENTS IN LINEAR CONDUCTORS

The term linear conductor is meant to imply that the

current streamlines, and therefore the conductor filaments,

are straight and parallel. The mutual inductance between

filaments is then given by Sommerfeld's solution (3.62)

and the self inductance of individual filaments may be calcu-

lated with (3.68). The current distribution over the cross-

section of linear conductors is of interest in pulse and

ac power technology.

Maxwell [14] was first to address the question of the

distribution of time-varying currents over the area of linear

conductors. He spoke of cylindrical conductors and the diffe-

rence in current Intensity in the various cylindrical strata.

This was the beginning of the skin effect theory which was

further developed by Raleigh [80] and others. Skin effect

equations derived from field theory have been solved only

for circular section conductors. In the case of non-circular

conductors the analytical approach fails becaiise of a lack

of knowledge of the appropriate boundary conditions. This

deficiency in the quantitative evaluation of skin effect

phenomena—and its impact on Joule heating, magnetic energy

storage, and force distribution—was first overcome by Sil-

vester [81] with a computer-assisted finite element method.

We start by considering the irregularly shaped conductor

cross-section of fig. 80. This has been subdivided into a

total of g equal -area square filaments. The two general

filaments, m and n, are separated by the distance d^^n .

For the sake of simplicity %m make the conductor of a homoge-

neous material such that each filament of length 1 has the

same resistance Rf . If a time-varying current is driven

along this conductor by an electromotive force e, which

will be the same for every filament, then the current in

the general filament m is governed by

(3.100)
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where e^ ^ is the back e.m.f. induced in the filament m.

The task facing us is to find this back e.m.f. which depends

on all the other filament currents. The latter, in turn,

are also controlled by an equation like (3.100). Unless

the number of filaments is very small, the solution process

is complex and time consuming. Not until computers became

available was it possible to make any headway in this en-

deavor .

Pig. 60 Conductor subdivision into square filaments

If ye denote the mutual inductance between two general

filaments by ^ and the selfinductance of the general
m* n

filament m by a set of simultaneous equations correspond-

ing to (3.100) may be structured as follows

e - (Rf ii*laii)*nL,2i2* "L,g^g
• . H2,ii'*(Rfl2*I,i2)* «2,glg

(3.101)

where i' stands for the time derivative of 1.. When alln m
currents are constant, (3.101) reduces to the dc case in
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which the current distribution is detemiined only by resis-

tances. As all filament resistances are the same, the current

distribution would then be uniform.

Let us Immediately concentrate on the most important

practical example in which the driving e.m.f., and therefore

all filament currents, are sinusoidal of radian frequency

(D, so that

(3.102)

(3.103)

where j-/^. ^ and are now nutual and self impedances

replacing the back e.m.f.'s of (3.100).

The array of simultaneous equations (3.101) may be abbre-

viated in matrix notation to

CZ]{i> (3.104)

where {i ) is a vector or column matrix. The impedance matrix

is square, symnetrical and of order q, the number of fila-

ments in the conductor.

IZ] ^1 ^.2

g.g

One of the solutions of (3.104) may be written

U ) - (Zr»e

In full the solution (3.106) should be written

(3.105)

(3.106)
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- (1/|Z| )

(3. 107)

i

Many sophisticated mathematical techniques have been de-

scribed which marshal and, to a certain extent, diminish

the monumental amount of arithmetic involved in solving

(3.106) when g is greater than, say, ten. Silvester [81]

was first to point out that the problem could be handled

with what he called modal network theory. It turns out to

be an exercise in eigenvector and eigenvalue calculus. Not

only does this method reduce the computational work, but

its main advantage is the ready availability of computer

programs which have been devised to determine the eigen-

vectors of any square and symmetrical matrix such as (3.107).

For a small number of filaments, the direct solution

process involving the determinant of the impedance matrix

(3.107) may be employed. To illustrate this we take the

simple example of the strip conductor of fig. 81. The strip

has been subdivided into three square-section (a x a) fila-

ments. The length of the straight conductor is I . If the

strip is made of copper and a-1 cm, £ -1000 cm, the room

temperature resistance of each filament is Rf-1.76 mn.

Fig. 81 Three- filament rectangular strip conductor
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Since the GMD of the square filament section is 0.44706a,

the self and mutual inductances resulting from (3.62) are,

this time in MKS-A units

- L2 L3 - 14.813 uH

Mj^3 - 11.820 uH

Let us write the simultaneous equations for the three- fila-

ment conductor as follows

2 11^ 1 * ^2^2 * ^3^3 ®

221^1* ^22^2 * h3h ' ^^-'^^^

^31^1 * =^2^2 ^^3^3 «

where 1^^, , and i 3 are the three sinusoidal filaiMnt cur-

rents, e is the driving e.m.f. and the Z impedances are

complex. As the selfInductances of the filaments are all

the same we have

Also because '^^3

2^2- - Z23 - - i-ML2 (3.110)

2^3 - Z^^ - ja)Mj^3 (3.111)

The determinant D of the impedance matrix may be evaluated

in terms of its cofactors. Then because of the equality

of the selfinductances and certain mutual inductances, the

determinant reduces to

(3.112)
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The numerical value of this determinant depends on the fre-

quency of e. Let this be the power frequency f-60 Hz. There-

fore ID - 2nf - 377 rad/s. Then

Zj^l
- jwLj - (1.76*5. 58j)xl0"' fl

2^2 - jwM^2 4.98x10"'

j

^3 "
^'^"l3

" 4.46xl0"'j n

and the determinant is found to be

D - -36.64 * 44.66j

The three solutions of (3.108) are qiven by

- C^/D; ij - Cj/D; C^/D (3.113)

C^, C^, and are Modified impedance determinants in which,

for C^, the k-th column is replaced by the constants of

(3.108). From the sysmietry of the conductor we know that

i^-13 and therefore (^"03. Only and C2 need be computed.

e Z12 Zi3

e Z22 Z23

e Z32 Z33

- «(Zil-ZllZl2*Zl2Zl3-ZllZl3) <3.114)

- e(2.43*3.03j)xl0'

C2

2ll « 2^3

Z21 e Z23

Z31 e Z33

- e[Z^^(Z^^-Z^2>-Zi2(2ii-Z^3)*Z^3(Zi2"2l3^^ (3.115)

C2 - e(3.01*2.12j)xio»

From this it follows that
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- i3 - C^/D - (13. 87-65. 79j)e

12 - Cj/D - (-4.68-63.56j)e

Pig. 82 Phaser diagram of strip currents

The amplitudes and phase relationships of the fllanent

currents with respect to the driving e.m.f. are shown in

fig. 82. As expected, the current amplitudes in the two outer

filaments are larger than in the center filament. This is

a manifestation of the skin effect. It would be more pro-

nounced at higher frequencies. Figure 82 also shows the

phase differences between the filament currents. The total

current I flowing in the conductor is the phasor sum of

the filament currents, or

I - 2(13. 87-65. 79J)e (-4. 68-63. 56j)e

- (23.06-195. 14j)e

|I
I

- 196.5 e (lagging by 83.3*)

This example also demonstrates that isolated linear conduc-

tors made of copper or aluminum are highly inductive with

the ac current through them lagging the driving e.m.f. by



248

nearly 90 degrees. However, when two closely spaced conduc-

tors form a go-and-return circuit, their combined inductance

is greatly reduced.

One of the primary reasons for computing the ac current

distribution is to determine what is known as the ac resis-

tance of the conductor. In the present example this would

be given by

^ac I I
i

I 'Rf )/| I| ' - 0.3394

The dc resistance of the strip conductor is 0.3333 R . Hence

by passing 60 Hz current instead of dc through the conductor

the Joule heating is increased by just under two percent.

At higher frequencies this increase VK>uld of course be grea-

ter. Finally we note that the ac current distribution is

a steady-state distribution in which the current in the

center is permanently smaller than at the perimeter. This

will not be the case for pulse currents. At the pulse- front

the current distribution is similar to the ac case, but

on the decaying side of the pulse the current is more concen-

trated in the core of the conductor than on the outside.

This is a little known phenomenon which may be called the

'core effect' [82].

A qualitative explanation of the core effect may be

obtained from the back e.m.f. equation (3.100). On the rising

side of the pulse, where de/dt and all di/dt are positive,

the back e.m.f. will oppose current flow. The back e.m.f.

is greatest where the inductance is greatest, that is where

a filament has the most close neighbors. Hence on the pulse

front the back e.m.f. will reduce current flow in the center

of the conductor. At the peak of the pulse, when de/dt and

all di/dt are zero, the current distribution will be govered

by the filament resistances. Now on the decaying side of

the pulse the time derivatives of e and i are everywhere

negative, and the back e.m.f. 's reverse sign and assist

continued current flow most in the center of the conductor



249

and least at the perimeter.

A qiantitative proof of the core effect is best provided

with the help of Laplace transformations. This requires

the conversion of a function of time f(t) into a function

f(s) of the Laplace operator s by

f(s) - /f(t) c-stdt (3.116)
0

Algebraic operations are then performed on f(s) until it

is in a convenient form for re-conversion to the desired

solution f(t). Even for the simple three- filament conductor

of fig. 81 the procedures are quite lengthy and only an out-

line will be given here, omitting much of the detail. An

excellent account of the handling of transient currents

with Laplace transforms has been published by Greenwood

[83J.

The starting point is to set up the array of three simul-

taneous equations for the conductor of fig. 81. The format

of this array has been provided by (3.101). Instead of apply-

ing a voltage pulse we will consider the switch-on transient

e-constant for t>0, e-0 for t<0, and later the corresponding

switch-off transient. A combination of the two is equivalent

to a square voltage pulse. In the case of the switch-on

transient the initial current in each filament is zero and

the Laplace transforms of the filament current i and its

time derivative are simply I and I.s, respectively. Further-

more, the Laplace transform of the voltage step e is e/s.

With this notation, and remembering that all three filaments

have the same resistance R and selfinductance L, and n^,

-n23' the three simultaneous equations may be written

s(R'»Ls)I^ M|^2*'^2 * ''iB^'^B " *

M^^Ml s(R*Ls)l2 Mi2S*l3 " «

Mj^^'I^ M|^2®'^2 s(R*Ls)l3 - e (3.117)
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The impedance determinant of (3.117) is

s(R*Ls) Mi2^' "l3®'

n^^s^ s(R*Ls) n^^s^

s(R^Ls)

'13^

(R*Ls) M

'12='

12"

(R»Ls)

(3. 118)

With the resistance and inductance values which have already

been specified for the ac example, the derterminant can

be shown to be equal to

D - 1.918xl(r*«s>(8«44.19)(s«588.09)(s«1093.7) (3.119)

The tvo modified impedance deteminants corresponding to

(3.114) and (3.115) are

e s(R«Ls) ^^2^'

s(R*Ls)

(3.120)

8(R«L8) e H^^s'

"l2»' • "l2»*

H^^8» e 8(R*L8) (3.121)

Having made the appropriate numerical substitutions,

the last two determinants were found to be equal to

- 4.ei6xl(r»V(8»*16828*6.432«10»)e (3.122)
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C2 - 6.734xlCr»'s'(s2*8410s-4.6>'10')e C3.123)

Hence the Laplace transform of the currents in filaments

1 and 3 is

I1-I3-C1/D

-25, 109e(s*»1682s*6. 432x10' )/[s(s*44.19)(s*588.09)(s*1093. 7)1

(3.124)

Similarly, I^, the current in the center filament is

-2.043xl0'e(s**8410s*4.6xl0')/[s(s*44.19)(s*588.09)(s*1093.7)]

(3.125)

The s-functions of (3.124) and (3.125) have to be split

into partial fractions for which the inverse Laplace trans-

forms are known. This can be achieved with

(s**us*v)/[s(s-a)(s-b)(s-c)] - \/(s(8-a)] Bj. /[(s-a)(s-b) 1

C./((s-b)(s-c)] (3.126)

and the identity

s**us*v = A,(s-b)(s-c)*B,s(s-c)*C,s(s-a) (3.127)

The thre partial fraction numerators come to

- v/(bc) (3.128)

Bi • (a*u*v/a)/(a-c) - a (a.b)/a (3.129)

C - (c*u*v/c)/(c-a) (3.130)
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It follows from (3.124) and (3.126) that the inverse trans-

form of the currents in filaments 1 and 3 may now be written

-25, 109e[A^(l- cat)/( -a) B^ (e*t-E*^^ ) /(a-b) C^ (c*>*^-e^^) / (b-c) ]

(3. 131)

where e: is the base of natural logarithms. Using (3.127)

another set of partial -fraction numerators ^2 ' ^2 ' ^2

may be found for the current in the middle filament (3.125).

The time dependence of this current may then be expressed

by

ij -2.043 KlO^etAjCl-E*^ )/(-a)*B2 (c**^ -E**^ )/(a-b)*C2 (e**^ -

-e*=*^)/(b-c)] (3.132)

It should be noted that the roots a, b, and c are the same

for i^^ and ij and they are all negative. Substituting the

previously specified filaaent resistance and self and mutual

Inductances for obtaining the A, B, C, coefficients, evalua-

tion|of the filanent currents resulted In the figures listed

in table 13 which apply to the conductor of fig. 81.

One second after applying the electromotive force to

the conductor, the currents have attained their steady state

values of 566.2 A. This is equal to e/R when e-1 volt.

It will be seen that during the switch-on transient the

current In the center fllaaent is snaller than the current

in the t%«o outer fllaMnts. In this case the difference

between 1^ and 1^ Is quite small. The true current distribu-

tion would be less uniform because the small number of three

filaments gives too crude an approximation. The small number

of filaments hides the fact that the current density will

be a maximum right at the corners of the conductor where

a thin flla»ent|)as fewer near-neighbors than anywtiere else
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in the conductor cross-section. It is the multiplicity of

near-neighbor filaments and their associated strong inductive

interactions which delay current growth in the center of

the conductor. Computer solutions for 100 filaments are

feasible and they would show quite accurately how the transi-

ent current distributes itself within the conductor.

The current distribution for the switch-off transient

has been calculated by the same finite filament method and

the results are also shown in table 13. It will be noticed

that the current distribution in the strip conductor is

reversed. The induced e.m.f.'s, due to near neighbor interac-

tions, now reinforce the center current more than the outside

currents. This has been called the "core effect" [82] to

distinguish it from the skin effect.

Field theory relies on the idea of magnetic field diffu-

sion into the conductor metal for explaining the skin effect.

The diffusion model cannot deal with the core effect. Presu-

mably this is the reason %^y switch-off current distributions

have never been analysed in the literature. The finite filam-

ent model solves this problem for the first tine. Skin effect

calculations also benefit from the finite filament method.

A rigorous solution of magnetic field diffusion exists only

for infinite half-space. The resulting formula is inadequate

for many practical situations involving wires and cables.

nax%iell [14] himself fell back on the Ampere-Neumann filament

concept and developed the elliptic integral technique for

calculating skin effects in round conductors. Until the

finite filament method became available it was not possible

to calculate the skin effect in rectangular conductors.

We may consider the two switching transients to be the

front and tail of a square voltage pulse. At the front the

e.m.f. applied to each filament is the same. This applies

a certain constraint to the current distribution which is

absent in the tail of the pulse. VAten the external e.m.f.

is removed, the induced e.m.f. 's in the filaments may differ.
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Table 13 Current distributions in the strip conductor

SWITCH -ON TRANSIENT SWITCH-OFF TRANSIENT

t ij/e ij/e t h-^3 h
sec A/V A/V sec A A

0 0 0 0. 001 493 859. 3

0. 001 24. 6 17.'9 0. 002 507. 3 720. 2

0. 006 112.7 97.

(

S 0. 003 495. 3 623. 7

0. 006 132. 3 117 .4 0. 004 479. 8 557. 4

0.007 151.2 136 .5 0. 005 460.4 510. 5

0.008 169. 2 155 .0 0. 006 440. 9 475. 5

0.009 186.5 172 .8 0. 007 422. 0 447. 6

0.010 203.0 189.8 0. 008 403. 8 424. 2

0.020 333.4 324..9 0. 009 386. 4 403. 5

0.030 417.3 411..8 0. 010 369. 7 384. 8

0. 040 471.2 467..7 0. 015 296. 4 307. 2

0.050 505.8 503.6 0.020 237.7 246. 3

0.060 528.

1

526..7 0. 025 190. 6 197.4

0.070 542.4 541..5 0.030 152.8 156.3

0.080 551.6 551..1 0.035 122. 5 127.0

0.090 557.6 557. 2 0. 040 98.2 101.6

0. 100 561.4 561. 2 0.045 78.8 81. 6

0. 110 563.6 563. 7 0.050 63.

1

65.4

0. 120 565.4 565. 3 0. 055 50.6 52.4

0. 130 566.4 566. 4 0.060 40.6 42.0

0. 140 567.0 567. 0 0.065 32.6 33.7

0.150 567.5 567. 5 0.070 26.1 27.0

1.000 568.2 568.2 0.075 20.9 21.6

0.080 16.8 17.4

0.085 13.5 13.9

0.090 10.8 11.2

0.095 8.6 9.0

0. 100 6.9 7.2

causino a lateral current exchange. This is the reason why

during the switch-off transient 1 2 i* Initially greater
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than the steady state current of 568.2 A. After about four

milliseconds the lateral exchange of current appears to

have died out. The results show the core effect, that is

during the switch-off transient the current in the center

filament is greater than the currents in the outer filaments.

When the number of filaments is greater than ten it

is advisable to abandon the foregoing solution process.

Kelly [84] has outlined the bestknown alternative techniques

suitable for computer handling. As previously mentioned,

Silvester [81] found that modal network analysis provides

additional tools for solving the set of simultaneous linear

equations. This involves eigenvectors (node vectors) and

eigenvalues (mode frequencies). The particular eigenvector

approach that will now be outlined is due to Parker [85].

We start with the set of equations (3.101) and assume

sinusoidal exltatlon so that the time derivatives of the

currents are defined by (3.102) and (3.103). This leads

to

(R*J«-4,l>il*J"»l,2i2* *J"»l,gig •

JwM2,lh*^''*J'^4,2^^2* J""2,gig " «

(3.133)

JwMgaii^JwMg 2^2" *
^"'^'^Srg^^g " ®

where the filament reslstaree R-R^ Is related to the electri-

cal conductivity o , conductor cross-sectional area A, and

the conductor length t by

R - - (l/o)(l/A) (3.134)

If U is the unit matrix of order g^g and is the square

gxg Inductance matrix, then the matrix form of (3.133) Is
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[RU * ja.M„^„l{i„) - {e) (3.135)

Dividing throughout by R and substituting (3.134) into the

Mm^n-term results in

(3. 136)

Now n will be called the generalized frequency related to

the actual frequency u by

n - CDO A/g (3.137)

This will be useful for establishing the scaling laws for

current distributions. It should also be appreciated that

the nutual inductance per unit length (Ng^^j^/l) is— in elec-

tronagnetic units—a dimensionless number. So is the unit

vector U. Furthermore, since in e.m.u. 's resistance has

the dimension of velocity, it will be found that the genera-

lized frequency q is also a dimensionless number. Therefore

the square matrix of (3.135) may be treated as a matrix

of pure numbers.

This matrix is associated with a set of g eigenvectors,

each being a column of g elements. The eigenvectors may

be placed side-by-side in a gxg square matrix of the form

h.i '9.2

h.g

^2.9

9.9

Eigenvector theory then asserts that

(3.138)

(3.139)
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where [ ^ diagonal matrix of the eigenvalues of

[U*Jn(Mj^ Both [I^ ] and ( A^^ ] can be determined with

available computer a logarithms. The number of filaments

q, which fixes the order of the matrixes, may be as large

as 500. Once the relevant eigenvectors and eigenvalues are

known, they may be used for calculating the ac current dis-

tribution over the conductor cross-section. The unit matrix

U arose from the filament resistances which are all equal

and therefore do not influence the current distribution

{i } . Hence the eigenvectors and eigenvalues needed to derive

the current distribution are actually those of the mutual

inductance matrix [Nq /it]. The eigenvector elements of

this matrix will be denoted by Igi^n eigenvalues

by x„.

Parker's method relies on the fact- -here stated without

proof—that the solution vector (i,^} of (3.135) can oe ex-

pressed In the form

<ln>-?,W ".140)

is the n-th eigenvector column of the I^, eigenvector

matrix and a„ is a coefficient, different for each eigenvec-

tor, which is not an eigenvalue of the [\J*iU(\^j^/l)] matrix,

but takes the place of some eigenvalue. Equation (3.140)

implies that the current in the general filament n is related

to the row-sum of the eigenvector matrix.

Now if the left side of (3.136) can be transformed to

an eigenvector expression, so can the right side. Therefore

(e) - ? b {I > (3.141)
, n n

n-1

where is some eigenvalue which may be found with the

following consideration. The eigenvectors are orthogonal

and if (1,^)'^ is the transpose of orthogonality implies

(3.142)
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where the Kronecker- 6 signifies that the product vanishes

unless m-n. Hence by multiplying (3.141) by the transpose

of the eigenvector we obtain

- {lj^)'^-{e) (3.143)

Substitute (3.140) and (3.141) into (3.136)

* ^n("in,n/^)l I A^^n) ' ^^^^^ I ,^n^^n^ (3.144)
n=l n"l

Now since

by the definition of eigenvectors and eigenvalues, (3.144)

nay be expanded to

? ,«h«In> • »? ,Vn*V - <«>'<In> (3.146)
n*l n«l n«l

This last equation also Involves a substitution for from

(3.143). The equation may be shortened to

I (l*in^n>«n^In^ - ^ ^n^^'
^•^

' ^ (3.147)
n«l n«l

Multiplying both sides of (3.147) by {I„>^ and using the

orthogonality property of (3.142) results in

(l*jnx^an - (l/R){ln)*-<e) (3.148)

This gives the a_ coefficient as
n

•n" {In>'*<*>^^'*(l*^«'^n^^ (3.149)

which can now be substituted into (3.140), thereby providing

the solution of the current distribution problen, that is

{i„) - (1/R)? {I^)''-{e)«{ljj)/(l*jnx^) (3.150)
n*l
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THE INDUCTION OF EDDY CURRENTS

The term "eddy currents" is a misnomer. It suggests

flow irregularities when, in fact, electromagnetic induction

is very precise and regular. Nevertheless, the subject is

complex and continues to spore publications in what is al-

ready a vast literature. In several instances the Ampere-Neu-

mann electrodynamics has proved to be a more po%#erful tool

than field theory for solving eddy current problems. However,

there is no room in this short book for the voluminous analy-

sis of induced currents in three-dimensional conductors.

Instead the reader will be referred to some of the relevant

publications.

Eddy currents are of practical importance in induction

heating, non-destructive electromagnetic testing, shielding

and electromagnetic compatibility engineering, and in a

variety of ac pov^r problems. Thirty years ago the author

became involved in what was then known as eddy current test-

ing of travelling wires and metallic pipes. The superposition

of relative motion between a stationary, high-frequency

induction coil and a moving test object led to dynamic in-

duction which was difficult to visualize in field theory,

but became more transparent in the Ampere-Neumann electrody-

namics. The interested reader is directed to references

[86], [87], and [88].

Two significant facts emerged from these early investiga-

tions which, ultemately, were responsible for this book.

The first was that a newtonian theory, based on gal i lean

relativity, could explain precisely the sane fact, involving

relative motion, as electromagnetic field theory which rests

on Einstein's special relativity. This being possible, nei-

ther of the two relativities can be as fundamental as they

are thought to be. The second fact concerned the time delay

occurlng between the cause of induction and the induced

effect itself. It could be explained with equal precision

by the energy transmission lag of field theory and the simul-
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taneous matter interaction processes of the Ampere -Neumann

electrodynamics. The second fact suggest that a time may

come when the eight minutes it takes sunlight to reach the

earth can be accounted for by a 'simultaneous' action-at-a-

distance theory. Again, with two explanations at hand, nei-

ther should be treated as "the final truth".

In this early research a model of successive filament

interactions was developed. It resulted in infinite power-

series solutions of the eddy current distributions. Looked

at it from the mathematical point of view, each term of

the series represented an iteration to the final answer.

In terms of physics the model suggested that when nature

is faced with multiple interactions (the nany-body problem),

it adjusts to the final state by a series of steps, which

could be infinitely small and infinite in number. Each step

takes the result of the previous step in account and than

applies it to a greater number of reciprocal interactions.

This could be the way analogue conputers work. Self-consis-

tent field theory aust achieve the same result. Then it

appears nature is a digital supercomputer which looks at

all the interaction matrixes and finds eigenvalues 'before'

anything happens.

The model of successive filament interactions has a

severe defect. All the infinite power series diverge when

the generalized frequency of equation (3.137) becomes greater

than one. Up to the limiting value of one, the series give

perfectly, though slowly, convergent results v^ich agree

with experiment and any other method of calculating induced

current distributions. The possibility exists that the rele-

vant power series may be analytically continued to higher

frequencies which would breathe new life into the successive

interaction model.



261

CHARTER 4

ATOMIC CURRENT ELEMENTS

THE CURRENTS ELEMENTS OF AMPERE, WEBER AND LORENTZ

How can one reconcile the continued experimental success

of the Ampere-Neumann electrodynamics with itr archaic physi-

cal foundation which predates any quantitative understanding

of the atomic and electronic structure of metals? This ques-

tion can only be answered by studying the nature of the

metallic current element and particularly its microscopic

makeup. Current elements are the 'particles' of electrodyna-

mics. Like all so-called fundamental particles, they grow

in complexity the closer they are observed. Moreover, since

it is now obvious that different force laws apply to convect-

ing charges in vacu\iro and conduction currents in metals,

ye most likely have to deal with two distinct types of cur-

rent element.

Ampere wrote the beginning of the current element story.

To him one of these elements was simply an infinitely small

piece of the conductor material containing an infinitely

small amount of electric fluid in motion. In this he adhered

closely to the principles of remote matter interactions

first suggested by Newton. There was no doubt in the mind

of Ampere and his followers that the forces defined by Am-

pere's law (1.24) acted directly on the substance of the

conductor and not on the electric fluid which was free to

slide through the metal without drag or any other mechanical

manifestation. Ampere also knew current elements did not

have to be infinitely small, so long as the separation be-

tween them was large compared to their size. Therefore,

referring to the remote element interaction, Weber would
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later speak of Ampere's ponderable wire-elements. Precisely

these wire elements have been resurrected in computer-assis-

ted finite current element analysis. By not defining the

mechanical linkage between the electric fluid and the conduc-

tor material, Ampere's electrodynamics has been able to

survive such scientific innovations as atomism, crystal Unity,

electron structure, and quantum mechanics.

A postulated property of the newtonian matter element

is that it does not interact with itself. This is almost

certainly true for any particle which can be described as

fundamental and indivisible. As we have seen, the postulate

also holds approximately for quite large macroscopic current

elements. In the absence of selfinteractions. Ampere's cur-

rent elements are invariably studied in pair combinations.

All actions of the Ampere-Neumann electrodynamics are mutual

actions between the menbers of a pair of elements. For mutual

mechanical forces to exist, both elements must carry cur-

rents. In the case of electromagnetic induction, only one

of the two elements need carry a current, the other can be

a neutral element of matter.

Although he lived through the second half of the nine-

teenth century, Neumann was as vague as Ampere about the

inevitable atomic nature of the current element. To this

day, this vagueness can be found in many modern texts on

electromagnetism which, by their silence on the makeup of

the metallic current element, perpetuate the antiquated notion

of the infinitely divisible, subtile fluid of electricity.

Neumann's extension of the Ampere theory dealt with electromo-

tive forces on the imponderable electric fluid. The parallel

existence of ponderable and imponderable (electromotive)

forces have become a hallmark of the Ampere-Neumann electro-

dynamics. Hodem electromagnetIsm has done away with the

difference between mechanical and electromotive forces.

All forces on charges are now considered to be of the same

nature, that is they are mechanical forces. Later in this

chapter it will be shown how, on the assumption of a specific
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mechanical linkage between electrons and the metal lattice,

we can do away with the imponderables of the old electrody-

namics.

The first step toward atomic current elements was taken

by Weber [13]. His elements are depicted in fig. 19 on page

59. He thought of positively and negatively charged particles

moving through the metal at equal velocity in opposite direc-

tions. His force law (1.90), which agrees with (1.24), in-

volved these equal and opposite charge velocities with re-

spect to the conductor metal in terms of the dr/dt deriva-

tives. Weber pointed out that in his current element model

the charge velocity v could never become greater than c,

which we now know as the velocity of light. This suggests

that Weber's theory contained the germ of Einstein's special

relativity. Furthennore, this state of affairs arose from

attributing magnetic actions to the finite velocity of par-

ticles endowed with electric charge. With no current flowing

in the metal, that is when in fig. 19 v-0, the charges in

the Weber current element are still subject to electrostatic

attraction. Weber did not assert the two charges of his ele-

ment would then combine and form a neutral particle. His

hesitation on this point probably derived from the fact that

electromotive forces could never start a current if all par-

ticles in the metal were electrically neutral. Nevertheless,

the invention cJ a current element which could respond, at

the same time, to electrostatic and electrodynamic forces

was truly remarkable.

In Wesley's [61] view, Weber came close to the quantiza-

tion of charge. In any case he assumed the positive and nega-

tive tive charge in the individual current element to be

equal to each other. They could be the conduction electron

and its associated lattice ion, but for the immobility of

the ion. When he formulated his current element, in the

1840*8, Weber had no knowledge of electrons and the atomic

lattice. With neither of his charges being coupled to the

substance of the conductor metal, he painted a confused
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picture of how forces on charges were transferred to the

body of the metal. At the same time the mobile charges could

respond well to electromotive forces. This he considered

to be an advantage of his current element over that of Am-

pere.

Ampere clearly attributed all magnetic actions to the

motion of the electric fluid. Weber went one step further

by claiming this fluid to consist of discrete charged par-

ticles. Electromagnetism then became a manifestation of

the motion of charges relative to the host metal. This con-

cept has survived to our time, but it will be challenged

by a new type of metallic current element. A weakness of

Weber's current element was its inability to establish me-

chanical interactions bet%ieen the charges and the substance

of the metallic conductor.

The essential modification which Lorentz made to the

metallic current element was the dropping of the positive

charge. What survived is the drifting conduction electron.

The Lorentz force as written in equation (1.133) still com-

bines electrostatic with electrodynamic forces but It then

no longer refers to the mutual interaction of two eleaents

of natter. Lorentz retained Weber's idea of the cuz*rent

element strength being given by the product of charge and

relative velocity with respect to the host netal. Hence

all magnetic effects of currents in Metallic conductors

are still being attributed to the charge velocity.

Lorentz 's drifting electron element recognizes only

one type of force which acts on the Bass of the electron.

This easily takes care of what were electromotive forces,

but it has its problems with Mechanical forces on the body

of the metal. Whilst the concentration of electrons trans-

verse to the direction of current flow can push against

the surface, and therefore the body, of a metallic conductor,

there seems to be no way in which the drifting electron

can produce anything resenbling Ampere tension. It is eur-
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prising, however, that the shortcoming of the lorentzian

current element model was not noticed in the 1920 's, when

Hering [58, 59] published his experiments, or in the 1930 's

when Cleveland's (62] experiment stirred considerable inte-

rest, or in the 1960's when Nasilowski [39] fragmented the

first wires with current pulses.

MUTUAL TORQUES BETWEEN AMPERIAN CURRENT ELEMENTS

At this point of the development of the Ampere-Neumann

electrodynamics we know that each pair of current elements

must be associated with an amount of mutually stored magnetic

energy given by equation (3.44). Turning the elements
m^ n

about certain axes relative to each other will change the

stored energy. The principle of virtual work then requires

the existence of mutual torques between the amperian current

elements. We will now determine these mutual torques.

Pig. 83 Angle convention for torque calculations

Consider the two coplanar current elements of fig. 83.

Equation (3.44) contains three angles, one of them being

dependent on the other two. This fact may be expressed by
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B - Q c (4.1)

The positive direction of angular displacements and torques

is taken to be a clockwise rotation about the positive direc-

tion of the axis. In ^ig.83 the positive direction of the

axis of rotation is into the plane of the paper. With (4.1)

the angle function of (3.44) may be equated to

2cose - 3cosa cose - O.Scosg - 1.5cos(2q»g) (4.2)

Using the symbol T for torque, the principle of virtual

work then defines two independent, elemental, mutual torques

with respect to the two angles of (4.2).

i i (dm.dn/r ) 1 1 . 5sin(2a* e )-0. Ssinc J (4.3)' m n m,

n

IA,n a m,n

(4.4)

If the two elements do not lie in the same plane, they have

to be resolved into coplanar components. The resolved compo-

nents will obey (4.3) and (4.4).

With (4.2) the magnetic energy equation (3.44) becomes

AP - -i i (dm.dn/r )(0.5cosc - 1 . 5cos(2a*E ) ) (4.5)
D/ n m n m,

n

This not only controls the torques but also the mechanical

interaction.

-i„in(dm.dn/ri n)l0.5co8C - 1 . 5cos(2o» c ) ) (4.6)

This last equation is of course merely an alternative form
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of Ampere's force law (1.24),

It Is instructive to examine the angle functions of

(4.3) and (4.4). An underlying assumption of the derivation

of the torque equations is that when « suffers a virtual

displacement, the angle £ is kept constant, and vice versa.

This means the action of the alpha-torque must be such that

it leaves the angle of inclination between the elements

unchanged. Therefore the alpha-torque (4.4) will try and

swing one element around the other in a circle of radius

r , while the elements remain parallel to themselves,
m, n

The alpha-torque clearly tends to displace atoms and it

is therefore a mechanical or ponderomotive torque. Not

in solid conductors, but in plasma and liquid metal

conductors, the atomic displacements can actually take place.

Next we examine the epsilon-torque of (4.3). With

reference to fig. 83, a virtual angular displacement A£

must mean a small rotation of one or both elements about

their pivots N and N. The torques at the two pivots are

in opposite directions which is indicated by the i sign

of (4.3). The mutual angular displacement should not change

the locations of M and N. Is it possible for the elements

to turn about these pivots?

Our object remains to show that the fundamental current

element is the conductor atom. A neutral atom is likely

to be spherical- symmetric with no feature which could

represent current direction. To remedy this situation we

have to think of the atomic current element to be some form

of dipole, possibly a diamagnetic dipole, which, like all

other magnetic dipoles, can turn on the lattice site. The

epsilon-torque, which turns this diamagnetic dipole, would

then be an electromotive rather than a ponderomotive torque.

It remains to be seen what the relation of the conduction

electron to the element dipole is. It must be the absence

of the electron which creates the dipole.
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The epsilon-torque should have a certain ordering effect

in a collection of current elements. The sign of (4.3)

depends on whether the torque is evaluated at M or at N

of fig. 83. In both cases it will be zero when

1 .5sin(2o<*£) = O.SsinE. (4.7)

Solving (4.7) for t gives

t = tan"^l1.5sin20i/(0.5-1.5cos2c»<) J. (4.8)

When the zero epsilon-torque angles have been determined

for a series of alpha values, stability may be explored

with small angular displacements from the zero torque

positions. In this way it will be found that co-linear

elements always tend to counter-align each other while side-

by-side elements will tend to co-align each other. Both

stable arrangements result in attraction between the

elements.

This is an interesting result. It suggests that a

dense plasma sphere, in which positive ions represents

dipole current elements, should contract under the action

of Ampere forces. The electrodynamic forces are far stronger

than gravitational forces. Therefore the plasma collapse

should be a noticeable phenomenon. The contraction will

be counter-acted by the thermal agitation of the plasma

ions. The collapsing sphere might, therefore, not form

at all or it nay stabilize at some finite radius. This

leads to the suspicion that ball lightning may ultimately

be explained with the epsilon-torque.

Whereas the ordinary Ampere forces obey an inverse square

law, the mutual torque interactions are of longer range

and proportional to the Inverse of distance. The effect

of elemental torques should consequently be quite large

unless the two independent torques somehow cancel

.
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GENERALIZATION OF NEUMANN'S LAW OF INDUCTION

Neumann's elemental law of induction (1.68) applies

to current elements of fixed orientation, constant current,

and variable distance. We expect that suitable formulas

for the elemental induced e.m.f.'s can be established when

the angular orientation and the inducing current change.

To derive these formulas it will, first of all, be shown

that any interaction between two amperian current elements

reduces to a two-dimensional problem. It is then sufficient

to derive elemental induction formulas for coplanar element

pairs.

r

Pig. 84 Two-dimensional element interactions

It is always possible to put the locations n and N of

current elements in a conaion plane with the direction

of one of the elements, say i„<in- In fig. 84 x-y is the common

plane and n the origin of a cartesian coordinate system

with ijjdm pointing in the positive x-direction. If ij^dn,

making the angle y with the common plane, is resolved in
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parallel and perpendicular components (ij^dn)jj_y and (ip^^^z

to this plane, the angles B and t and equation (4.1) apply

to the coplanar elements ij^^dm and (ipdn)jj_y . No magnetic

energy is stored between ijf^^ and (ij^dn)^ and no mutual

forces nor torques exist between these orthogonal elements,

whatever the orientation of in^n. This is in agreement with

Ampere's theorem stated at the top of page 13. For the ortho-

gonal pair ijpdm and (i^dn)^. cose and cos 6 are zero and

therefore AP^^^ ^ is zero regardless of any virtual displace-

ment given to i^^^n. Here it should be realized that in the

three-dimensional case all three angles are independent

of each other and equation (4.1) does not hold. We can ignore

the orthogonal element conibination. This means all current

element interactions reduce to a two-dimensional problem

for which (4.1) holds.

A pair of coplanar, amperian current elements has five

degrees of freedom. They are the two element strengths,

the angle of inclination between the elements, the distance

of separation, and the inclination of one element to the

distance vector (see fig. 83). It will now be shown that

a time-variation of any of these five quantities generates

induced e.m.f. 's in the elements. The process requires four

energy source-sink units. One is the store of magnetic energy

which will be denoted by S. The elements communicate with

their own electrical supplies Ej^ and ^ .Finally, there must

exist a mechanical agency which controls the distance of

separation betv^een the elements, which will be denoted by

M.

Variable r^^^-

For attracting elements and increasing distance, n must

supply energy to the elements. At the same time S looses

energy. These two streams of energy have to flow into m
and which sustain the currents Ig, and . Joule heating

plays no part in the conservative energy exchanges between

n, S, E^ and E^. It will be left out of the analysis. If
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the induced electromotive force in a complete circuit is

the sum of the elemental contributions, then each pair of

current elements should furnish

fle„ . -(d/dt)(in„,„in) (4.9)

For increasing distance and constant currents and angles

this becomes

«m - -f<»/"-,n,n'*"m,n"<"-B.n"'"'« '" lO)

Let Vj. -dr^ „ /dt stand for the relative velocity of one ele-

ment with respect to the other along the distance vector.

From the definition of the nutual force in terms of the

gradient of the stored energy (3.45) it follows that

and the Induced electromotive force becomes

This agrees with Neumann's law of induction (1.68). The

instantaneous power exchange between the mechanical source

n and the electrical source E^i, therefore is

This is a forward e.m.f. in the sense that it supplies energy

to , while the negative sign on the other side of (4.13)

indicates that f1 is supplying energy. Since the induced

e.m.f. of (4.13) is the result of relative motion it must

cause the same energy exchange in both elements, such that

Aenin • -^m,nVr (4.14)

For this to be possible S must give up just as much power

as n. The power flow from S is
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which proves that energy is being conserved and

(4.15)

(4.16)

The same kind of analysis can be performed for a reversal

of relative velocity, that is decreasing distance, and also

for the two corresponding cases of repelling elements. The

energy exchanges for the four different circumstances are

summarized in fig. 85. Let us briefly look at repelling ele-

ments and increasing distance. It requires S to supply energy

to n. Calculations prove that all the energy subtracted

from the magnetic store is being absorbed by the mechanical

source. There will still be e.m.f.'s induced in the elements

in accordance with (4.12), but they must now facilitate

an energy exchange between and E^. This is possible be-

cause one of the e.m.f.'s turns out to be a forward-e. m. f

.

and the other a back-e.m.f. In performing these calculations

care must be taken with the sign of the mutual inductance

betvifeen the elements. This si^n reverses whenever a current

element is reversed.

-(H) ay

^ (g)—^ (g)-*—

©

tCPULSIOH
ATTIU^CTION ATOJCTJOH ^THi^B
MCft-MW^NCf WOUMttMef MM-HSrANCC

Fig. 85 Power exchanges for variable distance
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Variable c.

Instead of attracting and repelling forces we now have

to deal with the mutual torque of equation (4.3). For any

value of a there exists a 180' interval of £ over which

the torque tries to increase c , and the remaining 180' over

which the torque tends to decrease £ . At the change-over

points the torque will be zero, but only one of these angular

positions is stable. Two stable arrangements have been dis-

cussed in conjunction with equations (4.7) and (4.8).

The e.m.f. equation applicable to the variable c case

has to be derived from (4.9). It is found to be

^©m - -intO/3e)Annj,nl«J^/dt)

• -^^^Vn^e/V"e ^^''''^

where is the angular velocity with which the elements

rotate with respect to each other. The electrical power

flow in relation to the mechanical power is given by

-4e„l„. (4T„^„)^«, - »4e„l„ (4.18)

Variable a.

The mutual torque for this case is given by (4.4). VAien

the elements are parallel, the stable angular positions are

a * ± f7/2. Other element inclinations result in other stable

angular positions. Parallel to (4.17), the e.m.f. equation

is found to be

Variable current.

Finally %«e examine the most common case of electromag-

netic induction, that due to variable current intensity.
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- -^M„^„(di„/dt) (4.20)

This formula involves i^^ but not ij^ . The other three e.m.f.

equations--(4. 12) . (4.17). and (4 . 19) --involve both currents,

because they depend on mutual forces or torques. The value

of the induced e.m.f. of (4.20) appears not to depend on

the strength nor the direction of the current in the element

that experiences the induction. In fact that latter current

may be set to zero and the e.m.f. would still exist. This

is the major difference between statically and motional ly

induced e.m.f. 's. How can the sign of the mutual inductance

be fixed if the direction of one of the current elements

is left undefined? To find an answer %#e have to fall back

on experimental evidence.

The line of action of the induced e.m.f. will generally

be determined by the circuit (wire) layout, but we are uncer-

tain in which direction along this line the Induced e.m.f.

will tend to transport current. If we take two parallel

wires and increase the current in one of them, then %ie know

from experience that the induced e.n.f. in the other will

point in the direction opposite to that in which the inducing

current flows. This follows from Lenz's law and accounts

for the negative sign in (4.20). Ue may generalize the empi-

rical finding and Lenz*s law by saying that the direction

of i^dm in (4.20) must be chosen such that AMiQ^n positive.

No other rule appears to satisfy the law of induction.

The four induced e.m.f. equations-- (4. 12) , (4.17), (4.19)

and (4.20)—represent the generalization of Neumann's law

of electroiiagnetic induction at the current element level.

The electromotive forces are given in e.m.u. of potential

difference. The conversion factor from e.m.u. (cgs) to prac-

tical NKS units is 1 volt - 10' e.m.u. As far as dimensions

are concerned it should be renembered that velocity is the

e.m.u. of resistance. Therefore all the velocities in the

e.m.f. equations could be converted to resistances by 1

ohm - 10* cm/s. It would conceal the fact that induced elec-
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tromotive forces are the result of relative velocities be-

tween current elements.

How does the induced e.m.f. produce charge transport?

Two possibilities exists. First, the swinging of elemental

di poles through 180* represents charge transport and current

flow. Alternating currents may be partly or entirely due

to swinging dipole elements. The second possibility is that

the e.m.f. acting on an elemental dipole, once the dipole

has been aligned with the e.m.f., tends to increase or de-

crease the distance between the conduction electron and

the ion. Forward e.m.f. 's would cause increases, and back-

e.m.f.'s decreases, in this distance which may be related

to the element strength, say i„dn>- For a sufficiently large

e.m.f. the bond holding the atomic current element together

may break, allowing the electron to Jump to the next ion.

A back-e.m.f. might achieve the same result as a forward

e.m.f., but with reversed current flow. Both e.n.f. 's could

be assisted or opposed by externally applied e.m.f. 's.

DIAnAGNETISn AND THE MBISSNBR EFFECT

Briefly recap iculating, it became clear anperian current

elements had to be of finite size and Involve the lattice

ion in order to explain Ampere tension in wires. The conduc-

tor atom Is of a suitable size and would be the smallest

possible current element. Inductance calculations made it

necessary to associate each atomic conductor element pair

with a finite aiiount of mutual inductance. This automatically

assigned a certain quantity of stored magnetic energy to

interacting current element pairs. The principle of virtual

work then required every element pair to be subject, not

only to a Mutual ponderomotive force, but also to a mutual

torque. The a-torque turned out to be ponderomotive, but

the e-torque could be treated as being electromotive, pro-

vided the atoaio element formed a dipole with the conduction
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electron swinging freely around the lattice site. This made

it possible to derive all induced electromotive forces from

the pivoted atomic current element model

.

The primary purpose of this chapter is to outline a

consistent theory in which the ponderomotive and electromo-

tive forces of the Ampere-Neumann electrodynamics are clearly

associated with the s€une atomic current element model. How-

ever, other electrodynamic effects in metals may also conform

with the pivoted current element model. An interesting pheno-

menon, in this respect, is diamagnetism and the related

flow of persistent currents in superconductors. Persistent

supercurrents are strong and lend themselves to an experi-

mental test of the pivoted current element nodel.

The phenonenological London [89] theory of superconducti-

vity indicates that inside a singly-connected superconducting

body the magnetic vector potential A obeys the diffusion

equation

y«A - X«A (4.21)

where X is a material coiBstant determining the depth in

wihich the persistent surface supercurrents flow, which are

a feature of the Heissner effect. Equation (4.21) is associ-

ated with a similar diffusion equation for the magnetic

field vector B. These equations require that the magnetic

field and the magnetic vector potential be expelled from

the interior of the superconductor but persist in a thin

surface layer. The expulsion of Magnetic flux is taken to

be the physical manifestation of the Heissner effect. But

the vector potential explains the induction of persistent

surface currents equally well and it is not possible to

strip it of all its physical relevance. The Aharanov-Bohm

[90] experiment, and quantum mechanics in general, have

delegated a more physical role to the vector potential than

has been customary in field theory. The magnetic vector

potential exists in field theory and the Ampere-Neumann
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electrodynamics and is, therefore, of particular interest.

Equation (4.21) is under all circumstances in accord with

the Ampere-Neumann electrodynamics, even when the supercon-

ducting body is not singly-connected, as a ring would be.

This suggests the Meissner effect should be observable in

a superconducting ring encircling a very long solenoid or

a toroidal coil. In both these situations the ring would

be located in a region where there exists practically no

magnetic field, but the vector potential is strong. Hence

if persistent supercurrents were induced in the ring, they

would be due to the vector potential and not the magnetic

field. It would indicate that the flow of persistent currents

in superconductors is controlled by the Ampere-Neumann elec-

trodynamics.

To probe how pivoted current elements could interact

to cause the Neissner effect, we examine what kind of order

can be established in a set of these current elements under

the influence of an external current. For this purpose we

calculate the torque exerted on a pivoted element i dm,
m

lying on a conductor circle of radius R, by all elements

of a current circle of radius r, coaxial and coplanar with

the larger R-circle, and carrying the ciirrent i^.

\ /
\
\

Fig. 87 Construction for coplanar current circles
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As fig. 87 shows, we direct our attention Initially on

two symmetrically disposed elements, (i dn). and (1 dn).. The
n 1 n ^

deflection of ^ from the tangential position has been

denoted by the angle y. Figure 87 also depicts how the posi-

tion of the two l^dn elements is given by the angles ±^ .

From this it can be seen that

Ej^- <^ - y; e 2'

The torque to be calculated is

C^T^.n)^ - -(S/8Y)iP„,„ M-22)

The currents and dn and dn are obviously not functions of

y. Furthermore, if the conductor circles are rigid and fixed,

r^^ ^ cannot vary with y. For the same reason the angle b Is

also independent of y. The angles which are functions

of Y and must therefore be involved in the differentiation

of (4.22) and (3.44) are c and a. Therefore

(AT^j )^ - i^ijj (dm.dn/r^^ )[-28ine Oc / 3y)*3cosB sina(3o/&'d]

(4.23)

But a-E*B-^-Y*B; Oa/3Y)— 1; Oc/aY)--l

Substitution into equation (4.23) then gives

^ATn,n\-^in^<'»<*"/''m,n>f28ln(^-Y)-3sin(^-Y*B)cosB] (4.24)

Now for the tiro positions of indn indicated in fig. 87 the

angle 0 is

B^- 90* 6; $2' 90* - 6

Therefore the torque exerted by either of these two elements

on igdm becomes
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(ATm^n^'^m^n^^^-dn/r^j, j^)l2sin(^-Y)-3cos((^-Yi6)sin(i6) 1

(4.25)

where *6 goes with (i dn), and -6 with (i dn)..
n 1 n £

The angle function of (4.25) for (in<ln)i is

2sin(<t.-Y)-3cos((|>-Y*6)sin6

and that for (ijjdn)2

2sin(-^-Y)-3cos(-^-Y-6)sin(-6)

When the sum of these two functions is zero, no torque will

be exerted on i^dm by the two syimetrically disposed elements

on the r-circle. This will be the case when yO or 160*,

and it is true for any value of ^ and 6 . Therefore there

will be no torque exerted on iQdn by the whole of the r-

circle when yO or 180*. To determine which of the two values

of Y represents the stable equilibrium we have to compute

the sum

28in(«-Y)-3sin(*-Y*6)sin6*2sin(-*-Y)-3sin(-^-Y-6)sin(-6)

for a range of ^ and y values.

The results of this computation are listed on table

14. They show that the only stable angular position of ij,

dm is Y -180*. naximum torques in opposite directions are

being exerted on the test element when ^90* and 270*. From

this analysis %«e may conclude that the i ^-circle as a whole

tends to counteralign i^^dm with i^ . Because of symmetry

this will be true for all atomic current elements on the

larger of the two conductor circles. It means the steady

(dc) current 1^ should be able to induce a steady diamagnetic

current (dc) ig^ flowing in the opposite sense of i,^. By a

diamagnetic current we mean a current which does not involve
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Table 14 Results of stability calculations

Remarks

0 30 0 UNSTABLE

10 30 0.339

30 30 0.975

60 30 1.689

90 30 1.950 POS. MAX.

120 30 1 . 689

150 30 0.975

170 30

180 30 0 STABLE
190 30 -0.339
210 30 -0. 975
240 30 _ « C.OQ

Z r U -1 . 950 NEC. MAX.
-1 . 689

330 30 -0.975
350 30 -0.339

0 135 0 UNSTABLE
10 135 0.643
170 135 0.643
180 135 0 STABLE
190 135 -0.643
350 135 -0.643

0 70 0
180 70 0

0 90 0
180 90 0

0 165 0
180 165 0

0 180 0
180 180 0

charge transport but nevertheless produces the magnetic

effect of an electric current. Neugebauer [91] called this

absolute dlaBagnetlsa. It should be renembered that Induced

dlamagnetlsB in a normal conductor metal will produce an

external magnetic field i^lch Is Indistinguishable from

the field that would be produced by currents In the conduc-
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tor. In normal metals this effect is extremely weak but

In superconductors it becomes large. It is impossible to

decide by experiment whether the persistent supercurrents

are electron transport currents, as coiunonly believed, or

diamagnetic currents. To prove charge transport, the metallic

circuit of the superconductor would have to be interrupted

and this would destroy the magnetic order associated with

a diamagnetic current.

On the assumption that diamagnetic currents account

for the persistent currents, we can also gain an understand-

ing of supercurrent skin formation and screening as required

by equation (4.21). Adding a third and more conductor circles

on the outside of the two circles shown in fig. 87, we expect

i will also induce diamagnetic currents in the additional
n

circles. But their strength in the successive circles will

be reduced, not only because of the greater distance from

ij^, but also because the various diamagnetic currents tend

to counterallgn each other. In this way im performs a screen-

ing function and every subsequent circle helps to screen

those that lie beyond it. This tendency of diamagnetic cur-

rents to counterallgn each other becomes dominant when ther-

mal disordering ceases in the superconducting state. The

ordering effect of the external current is then suppressed

within Just a short distance inside the superconducting

body.

Since the number of atomic current elements in the super-

conducting body is finite, there must come a time, with

increasing external current intensity, vtien all elements

of the skin are aligned. It would represent some kind of

diamagnetic saturation and should impair the screening func-

tion of the persistent currents. When this happens the per-

sistent current skin should grow thicker until it pervades

all of the superconductor and thereby eliminates the Heissner

effect. The pivoted dipole model of the current element

therefore provides a new explanation of the quenching of

superconductivity by what could be called a critical magnetic
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field. It is expected that any kind of diamagnetic order

in normal metals is continuously being upset by thermal

agitation. This agitation must be capable of turning dipole

elements. Normal metals would then experience an extremely

weak Meissner effect, probably too small to be detectable.

This argximent is consistent with the experimental fact that

superconductivity occxirs only at very low temperatures.

Unlike paramagnetism and ferromagnetism. diamagnetism

does not occur spontaneously. It is an induced effect which

depends on the proximity of an electric current (an applied
magnetic field). The pivoted dipoles of the metal are likely
to exist at all times, even when the metal is not in the
vicinity of an electric current, because otherwise an induced
e.m.f. could not start a current in the metal. It should
therefore be possible to show the dipole elements cannot
spontaneously--without assistance from the outside--establ ish
magnetic order in the metal. To investigate this point we
will return to the a-torque equation (4.4) and the question
of the stable inclination of the dipole elements for variable
a.

Fig. 88 Stable angular positio of Pivoted elements
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Figure 88 illustrates the results of stability calcula-

tions for the general pair of co-planar dipole current

elements i dm and i dn withO( varying in steps of 15 degrees,
m n

The radius of the circle is the distance r. . and i dm is
nif n m

held fixed at the center. From these results it follows

that in a spherical shell only the dipole elements lying

in the equatorial plane will align themselves spontaneously.

All the others will be disordered. In addition to this

general disorder, thermal agitation of the atomic elements

will interfere with any possible cooperative alignment.

Hence it may be concluded that any collection of atomic

dipole elements of the metal lattice, when left to

themselves, will be completely disordered. This excludes

spontaneous diamagnetism.

It still remains to be shown that the diamagnetic coun-

terallgnment of dipole elements in co-planar circles also

holds for coaxial circles which do not lie in the same plane.

If this turns out to be the case, then a very long solenoid,

consisting of many parallel current circles, should induce

diamagnetic currents in a superconducting ring surrounding

the center portion of the solenoid. Furthermore, the

diamagnetic currents in the ring should give rise to

screening and the formation of a persistent current skin.

It would provir^e the theoretical demonstration of how the

Ampere-Neumann electrodynamics requires the occurrence of

the Meissner effect in a region of curl-free vector

potential. Even more important, the solenoid and

superconducting ring experiment would be a test of the

validity of the pivoted dipole model, for--on the basis

of conventional field theory—the Meissner effect should

not arise in a region where the magnetic field is zero.

The solenoid will be modeled by one layer of closely

packed conductor circles, each carrying a current i^. In

the center plane of the solenoid, and closely coupled to

it, lies another coaxial conductor turn which models the
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superconducting ring. Figure 89 shows the parameters of

the surrounding turn and one turn of the solenoid which

will be used in the analysis. The circle of radius R, which

experiences the diamagnetic induction, has its center 0

located at the origin of a cartesian coordinate system and

lies in the y-z plane. The solenoid turn is of radius r

with its center at 0' separated from 0 by the distance d

along the x-axis.

We consider one atomic current element i situated

at the top of the R-circle. Its coordinates are m(0, 0, R).

Let this interact with the two elements (i^dn)^ and (l^dn)2

on the r-circle. These two elements are disposed symmetrical-

ly about the z-axis as indicated in fig. 89 by the ±^ angles.

Their coordinates are n^Cd, r.sin^, r.cos^) and n2(d, -r.sln^,

r.cos^). The element ig^dm will be turned through the test

angle y in the y-z plane. If (r^^^jj )^ and (r^^^j^ )2 are the

distance vectors pointing from the n-elements to the m-ele-

ment, their direction cosines are, respectively

cose --(d/r ); cose.--(r/r )sln^; cose - (R-r. cos 4»)/r„ ^X m,n y mrn z ffi,n

with the appropriate distances inserted in (4.26). The direc-

tion cosines of the three current elements ijQdm, (i,^dn)j^,

(i„dn)2. In this order, are

(4.26)

cose^-0; cosOy-cosY; cosOj-'SinY (4.27)

cose^-O; cosey-cos^; cosej-'Sin^ (4.28)

cose^-O; cosOy-cos^; cosej'Sin^ (4.29)

Noting that r^j ^ is the same in both cases, this gives the

cosines of a and 0 of the electrodynamic potential for the

two distance vectors as
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Fig. 89 Diagram for solenoid calculations

(cosa) , --(r/r_ „)sin0 cosy-[ (R-r.cos^)/r„ ^Isiny

(coss) j^--(r/rjjj n)sin^ coS(>-( (R-r.cos^)/rm ^^jsin^

(cosa) 2"(^^^m,n^^^"* cosy-[ (R-r.cos(^)/r„, ^JsioY

(cosB)-,-(r/r. „)sin* cos(>*[(R-r.cos«)/r ]sin0

(4.30)

(4.31)

(4.32)

(4.33)

Now the torque experienced by i^^ in the plane of the R-

circle and due to an element on the r-circle is

-i^„(dm.dn/r„,„)0/3Y)(2cose-3cosacos6) (4-34)

^< « «f V and e is the difference
The angle B is not a function of ana

(4.35)

e - - Y
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Therefore

(ATj^ j^)Y-imin«im.dn/r„ jj)[2sin(<D-Y)-3cosB 3(cosa)/3Y] (4.36)

But

0/3Y)(cosa) j^-(r/r^^j^)sin^ sinY-[ (R-r.cos<j>)/rj^^ j^Jcosy (4.37)

0/3y)(coso)2--(3/3yHcoso)3^ (4.38)

It is the sum of the products cos 6[ 3 (cosa ) /3y ] for dn^^'^)!

and (i^dn)2 which determines whether the combined effect

of the two elements on imdm cancels for certain values of

Y- Hence we have to evaluate

{-(r/rm^j^)sin(> cos0-( (R-r.cos4>)/rnj^nlsln*}'*

«{(r/r^^„ )sin* sinY -[ (R-r.cos4> )/r Icosy)

{(r/r )sin^ cos^*[ (R-r.cos^)/r_ ^lsin0}x
mrn alia

x{-(r/r^^jj)sin^ siny-t (R-r.cos 0)/rj^^ j^]cos y>

--{(2rVr* „)cos0*[IR-r.cos^)/r« J >sin* 0 siny (4.39)
n m# n

Hence the torque on ig^dn due to the two symmetrical elements

on the r-circle is

(
n^ i n^^"-

^^"/'^m^n^ Y> *2sin ( -Y )

3[(2r*/r* „ )cos0 2(R-r. cos )r/r* „ ]sin** siny)
Wf n lUf n

(4.40)

It is obvious that this torque will be zero when y-0 and

180*. As this is true for all pairs of symmetrical element

combinations on the r-circle, regardless of ^ , it is also

true for the circle as a whole.
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Since cose -0 for all three element*? ;»n,< a^ eiements and d appears only
in cose^ of the direction cosines of the distance vector

rm,n' ^^^^^^^ ^ ^ B depend on d. Therefore all sole-
noid turns to the right of the R-clrcle produce zero torque
on i„dn« when y -0 or 180-

.
For turns of the solenoid lying

to the left of the R-circle on fig. 89, only the x-coordinate

of (in^"h ^^n^h changes from d to -d. This has no

effect on cosa , cosB . and r„ „ so long as the magnitude

of d is the same. Therefore for all values of d the solenoid

turn at -d will produce a torque on l^dra in the same direc-

tion and of the same magnitude as the turn at *d.

It remains to be shown that, as in the case of coplanar

circles, the element ijQ dm is in stable equilibrium when

Y-180*. This has been proved by computing (ATj^ (i^^dm.dn)

for a range of y and d values. Table 15 lists the results

which confirm that y -ISO* is the stable equilibrium position

of i-dni.m

Table 15 Stability calculation results

Y- (AT„,nN/(^min*»-d"^

^.0 d-30 d-300 Remarks

Q 0 UNSTABLE

STABLE

-0 : -.r.is

l-iVil
0.1.8.10-

180 0 0 0

-0.8074 -0.0467 -0.888no:

lis -i.lltl :i:\lZ-:^o.^

300 -4.0268 -0-"27 ,^5-

330 -2.3249 -0.13« .0.888.IO-

350 ;S:85?i
-0.0467
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We conclude, therefore, that the solenoid as a whole

tends to counteralign all dipole elements of the R-circle

to the current i^^. In other words if i^^ flows anti -clockwise

about the positive x-direction, as in fig. 89, the diamagnetic

current i^^ is directed clockwise. This analysis predicts

the induction of diamagnetic currents in a region of curl-

free magnetic vector potential, but it does not specify

the magnitude of these currents.

A quantitative assessment of the diamagnetic currents

is possible. As only closed currents are involved in the

relevant interactions, the vector potential component paral-

lel to dm at the position of the element dm, which is being

generated by the second element in<^' may from (1.76) be

%fritten

The complete circuit n gives

/aA„ „dn - i„/(cose/r„ „)dn (4.42)
1 m«n n' m^n
n n

The long solenoid may be treated as consisting of z circular

turns (r-circles) each carrying the current i^^.

One of London's [89] equations of the superconducting

state is

j. - -kA (4.43)

where J. is the persistent current density at a location

where the magnetic vector potential is A. We now investigate

whether the Ampere-Neumann electrodynamics will yield a

value for the constant k. The single filament representation

of the R-circle implies that ijQ-ja, where 'a' is the filament

cross -sectional area. The constant k must be a function

of this area. Combining (4.42) and (4.43) we write for z

solenoid turns
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I /(^^s^/'^m,n>d" (4.44)
z n

Integrating (4.44) around the R-circle results in

W^"" - -^n I / /(cose/r„ )dn.di« (4.45)
z m n

The double Integral will be recognized as Neumann's mutual

inductance formula (1.26) for two closed curves m and n.

The sum over z of the circle mutual inductances is the mutual

inductance between the solenoid and the surrounding R-circle.

If this is denoted by M, equation (4.45) reduces to

V^n -M/(2^R) (4.46)

There are techniques available for measuring and computing

M. Hence (4.46) may be used for determining the constant

k in (4.43). The negative sign of (4.46) indicates that

the two currents flow in opposite directions. This complies

with the observed Nelssner effect. Equation (4.46) is likely

to fall when diamagnetlc saturation is reached and supercon-

ductivity Is being destroyed by the inducing current.

Take the practical example in which the solenoid radius

is r-1 cm and R-1.1 cm. Furthermore, let the solenoid be

wound as one layer of 600 closely packed turns of 0.063

cm diameter wire. Using the single filament approximation

for all 601 wire circles, N has been computed to come to

5.99 cm. Hence according to (4.46), the current ratio in

this practical example should be iQ/i„--0.867.

An experimental test of this theory may be performed

by cooling the superconducting ring through the transition

temperature while the solenoid carries a steady current.

A coaxial detector coil of copper wire should be placed

next to the superconducting ring and c<ded with it. If the

Meissner affect is due to the expulsion of the magnetic

field, as commonly believed, no voltage pulse should be

induced In the copper coil at the transition temperature
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when the ring becomes superconducting. On the other hand,

if a voltage pulse is being detected, it would establish

that the Meissner effect is the result of the expulsion

of the magnetic vector potential from the bulk of the super-

conductor. It would lend strong support to the concept of

pivoted, atomic current elements.

UNIFICATION NOTWITHSTANDING

These last few pages are devoted to speculation. Nathema-

tlcal reasoning and restraint are put aside to reveal motiva-

tion and aspiration. In the physics of the 1980' s the Anpere-

Neumann electrodynamics is, at best, a foreign body of know-

ledge. How can it be reconciled with all we have been taught

or may be teaching ourselves? How does It fit in with current

research to unravel more secrets of nature? It Is not only

that the old electrodynamics has a strange appearance; it

is outright disliked and unpopular. It might forever remain

a curiosity in the annals of science, were it not for some

xindeniable experimental facts. Science is not the black-and-

white, right-or-wrong, cold, logical activity young Idealists

choose as a career to Insulate them from the prejudices

and questionable judgements of other pursuits. It embodies

all the passions, fashions and Irrationalities of human

enterprises. In the long run, however, physics has to comply

with the facts of experience. For a while some of these

facts can be concealed, talked away, or glossed over for

the sake of retaining some unity in the presentation and

teaching of the subject.

RelativistIc electromagnetIsm has been a closed topic

for eighty years, neatly packaged In a great variety of

textbooks which all preach the same sermon. Moreover, start-

ing with Einstein's endeavors, late in his life, the fashio-

nable thing to do in physics has become to work on the unifi-

cation of electromagnetic with nuclear and gravitational
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forces. It is not at all clear what can be gained from unifi-

cation. Are we to believe the Creator had some incentive

to use only one kind of force, or law of nature, to make

the miraculous universe tick? Was his purpose to make it

easy for man to understand Nature? Unification brings unques-

tionable advantages to the teaching of physics. What could

sound more convincing to the unexperienced than telling

them that all knowledge flows from a single abstract concept?

Most of all, unification would add immensely to the aesthe-

tics of science. None of these noble ends make unification

necessary or inevitable.

There is another side to unification. The discovery

of the rules of action prevailing in the physical world

have ultimately enabled us to create the civilization in

which we live. Nan's separation from the animals has come

about through his poiMr of invention which culminated in

the technology of the twentieth century. The inventor has

to be able to predict and visualize when certain things

are put together in a certain way and supplied with energy.

To do this he calls on a vast aoount of scientific informa-

tion, some experimental and soae theoretical. The more varied

this information is, the better are the inventor's chances

to find solutions to new challenges. If unification means

the combination of different scientific fields into one

subject, then the condensation of knowledge will in fact

reduce the armory of inventors.

Considering the huge success of Newton's gravitation

and mechanics, how could the action-at-a-distance concept

become so unpopular? No compelling reason seems to exist

for the dislike of it. Contact-action is a more graphic

experience in everyday life. Yet in the sophisticated fabric

of physics, it would seem too simplistic to think that every-

thing that moves has to be pushed around by something leaning

on it. I believe the philosophers of science, men like Para-

day, Maxwell, Lorentz and Einstein have been drawn to theo-

ries of the ether and the field by their limitless imagina-
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tion which these intangible ideas set free to roam, natter

interaction theories do not dwell on that part of physics

which is totally unobservable. They are a form of mental

straight- jacket subdoing the evolution of abstract models

and mechanisms.

While Faraday and Maxwell assembled most of electromagne-

tic field theory, with elastic lines of flux, flywheels

of self and mutual inductance, ether stresses, and so on,

the final stamp of approval was placed upon it by Einstein.

His ideas were accepted eagerly, even by those who knew

little about physics and mathematics. He disagreed with

action-at-a-distance but said very little about it. When

discussing the foundations of theoretical physics [92] he

once i^ote: "From Newton's time on, the theory of action-at-

a-distance was constantly found artificial." Following this

remark he quoted Just one example, that of iron filings

tracing out a field pattern on a sheet of paper. "How was

each single iron filing among a lot scattered on a piece

of paper to know of the single electric particles running

round in a nearby conductor?" Ampere provided the answer

to this question 130 years before Einstein asked it. When

Einstein's book was published. Ampere was long forgotten

and never mentioned.

Mechanics as developed by Newton and his followers is

not a perfect simultaneous matter interaction theory. It

contains the concept of inertia which Newton did not base

on the interaction of pairs of matter elements. Inertia

is apparently experienced by an isolated particle without

the participation of other natter. It caused Newton to Invoke

absolute space as a participant in the physical action spec-

tacle. This facet of inertia is out of step with the remain-

der of newtonlan mechanics. It suggests relative positions,

velocities and accelerations between particles of matter

are not sufficient to state the laws of nature. Nevertheless,

Newton's physics remained true to galilean relativity, just

as Weber's electrodynamics did, inspite of the latter 's
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involvement with the velocity of light.

In my opinion Mach [93] proposed the best, and possibly

a sufficient, resolution of the riddle of inertia. He said

it looks as if the inertia of a body is its gravitational

interaction with the distant matter of the universe residing

outside the solar system. It would then be a gravitational

pull in all directions and not just toward one body which

dominates gravitation because of its proximity. This long-

range, distributed gravitational interaction is likely to

influence the translatory and rotational motion of the body.

Apparently we can take care of the imnensely complex, simul-

taneous interaction manifold by assigning Inertia to a body

in proportion to its gravitational mass. It rather looks

as if linear and rotational momentum are conserved in the

universe as a whole. To insure monentun conservation at

all times there must be instant' communication between bodies

and particles on earth and the matter of distant galaxies.

Newton's law of gravitation provides this simultaneity of

Interaction over any distance. What we observe, however,

is not force but the results it produces in terms of the

relative motion of bodids. Cause (force) and effect (veloci-

ty) do Involve tine derivatives leading to time delays.

So far no mathematical system of equations has been

found which adequately describes the interaction complex

of bodies and particles in the solar system and the huge

amount of mass in the remainder of the universe, while com-

plying with Newton's law of gravitation and Nach's principle.

A number of attempts have been made, but in the end they

resulted in models that could not be described as being

truly newtonlan. One of these attempts is Einstein's gene-

ral theory of relativity. In another Noon and Spencer [94]

modified Newton's law of gravitation so that the distant

matter in the universe would be repelled from the solar

system. A most interesting treatment of the subject was

provided by Sciama [95] who showed that "... matter has

inertia only in the presence of other matter". In Sciama 's
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theory inertia turns out to be an induced effect depending

on the rate of change of a vector potential, very much like

the generation of distant e.m.f.'s with Neumann's law. But

Sciama then retards the vector potential which gives rise

to a special relativity which is alien to newtonian physics.

The real shortcoming of simultaneous matter interaction

theories has been that they were not developed to embrace

radiation phenomena. At first sight it seems plausible that

the simultaneous interactions of the Ampere-Neumann electro-

dynamics are not compatible with the experimentally observed

delays between the emission and reception of light. Precisely

this argument led to the introduction of retarded potentials

to save the action-at-a-distance concept. Burniston Brown

[28], Noon and Spencer [21], and very recently Wesley [96],

have all made laudable efforts in combining retarded poten-

tials with actlon-at-a-distance to formulate complete elec-

tromagnetic theories.

I will argue that simultaneous matter interactions can

be retained and made compatible with the time delays of

radiation phenomena, although the mathematics for such a

scheme are still wanting. It would be a newtonian theory

invariant under gal i lean transformations. Consider the clas-

sical example of infinite half-space filled with a metal

and subjected to an alternating magnetic field parallel

to its surface. Field theory teaches us that alternating

currents will be induced in the metal, the current amplitude

decreasing exponentially with depth in the metal. Further-

more, the phase shift of the induced currents, relative to

the sur^e field, also varies with depth. This phase shift

may be interpreted as the delay caused by the transport

of energy from the surface to a given depth in the metal.

It will be remembered that the velocity of electromagnetic

energy propagation in metals is very much smaller than the

velocity of light in free space. Field theory and the Ampere-

Neumann electrodynamics actually predict exactly the same
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amplitude decrement and phase shift of the induced currents

as a function of depth in the metal. Therefore, in the half-

space example, the Ampere-Neumann electrodynamics predicts

the same induced phenomena and time delays as a theory that

is based on energy transport at finite velocity. This curious

state of affairs could be demonstrated more directly with

a field pulse. Both theories would then indicate the same

time-lag with which the pulse arrives at a certain depth

in the metal. For this reason I believe I am justified to

express some hope that the much longer time delays of elec-

tromagnetic induction over astronomical distances may some

day also be explained by a simultaneous matter interaction

theory.

In connection with Mach's principle it was argued that,

if simultaneous ponderomotive forces between two bodies
are the cause, and the attainment of a certain relative
velocity between the bodies is the effect, then we will
observe time delays between cause and effect. A similar
case can be made for electromagnetic induction. The cause
would then be a time-varying inducing current, and the effect
the attainment of a certain induced current. This clearly
involves a time delay between cause and effect, even though
the electromotive force interaction of (4.20) is simulta-

neous .

The rediscovery of Ampere tension and other associated

experimental results force us to take a second look at the

electromagnetic theory which held good for eighty years.

This may be disturbing to teachers, but it should not sur-

prise us, unless we believe that we already know the absolute

truth. The beginning of physics could be coupled with the

beginning of quantitative, experimental science. Galilei

deserves much credit for starting this line of investigation.

Therefore quantitative physics is about 400 years old. Com-

pared to the time of evolution of the human intellect, which

set us apart from the animal world, the last four centuries

are but a brief instant. Ue should not expect to have dis-
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covered all the secrets of nature in so short a time. Much

remains concealed to us, and the journey of discovery is

as exciting now as it has ever been. I do not agree with

Hawking [97] that the end of theoretical physics may be

in sight and could come with a grand unified theory by the

end of this century. He speculated that after grand unifica-

tion, theoretical physics could possibly be left to compu-

ters. Hawking mirrors the arrogance of some mathematical

thinkers who underestimate the power of experiment as a

tool of discovery for charting unexplored territory.

Hesse [98] has written a beautiful account of action-at-

a-distance in the history of science. It brings out the

point that we human beings have been unable to think up

more than two action principles. Far-actions, as they are

called in the German literature, and the contact-actions

of the aether and the field. The contact-action philosphy

has been far more popular than that of far-actions. Yet

for the most important single advance made in science, that

by Newton, it was necessary to drop contact-actions in favor

of far-actions. One gains the impression that far-actions

lead to greater rigor. This was insufficient, however, to

terminate the love affair of the human mind with something

spiritual pervading all space. The unchallenged reign of

newtonlan physics lasted hardly more than two hundred years,

which is half the age of quantitative physics. By the end

of the twentieth century we are as totally immersed in 'the

field' as Descartes was Just before the rise of Newton.

One of the cherished philosophical notions of modern

physics is the flight of the photon through space. This

'particle' belongs to philosophy because there exists no

experimental proof of its existence. The separation of energy

from matter is essential when one wishes to do away with

the other philosophical notion, that of far-actions. In

Newton's cosmos we had only one substance, which was matter.

Now we have two substances, matter and energy, unification
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notwithstanding. They can co-exist in the same location or

part company. Not always is energy a separate substance.

A moving particle, for example, which posesses kinetic energy

is only matter.

What would happen to physics if we were to do away with

free energy? Well, to begin with, we would no longer have

to quantize energy. This quantization was the perplexing

aspect of Planck's discovery. The wave-particle duality would

disappear, for we then would have to explain the wave- like

behavior of the particle by far actions without a wave of

energy. This has already been done quite successfully by

Burniston Brown [28]. It would also mean, as mentioned before,

that energy transmission time lags would have to be explained

by simultaneous matter interactions depending on time deriva-

tives. Abolishing free energy would spell the end of special

and general relativity. So much hinges on choosing one of

the only two available philosophical principles of far and

contact action.

The Ampere-Neumann electrodynamics is utterly dependent

on the quantization of matter and electric charge. It associ-

ates bound energy with the arrangement of material current

elements and charges. It is compatible with the quantization

underlying newtonian mechanics. It gave rise to the magnetic

vector potential which has become so important in quantum

mechanics. There is every indication that the Ampere-Neumann

elctrodynamics makes an ideal partner of quantum theory,

albeit a causal quantum theory.
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